Interactive Heuristic Search Algorithm

CP 2002 Tomáš Müller muller@kti.mff.cuni.cz Charles University Prague, Czech Republic 12-Sep-2002

Introduction

- for Finite Constraint Satisfaction Problems
 - variables with finite domains, constraints between variables
- Generalization of Timetabling Algorithm
 - lecture timetabling
 - activities, resources, various soft & hard constrains
 - promising results

- presented at PATAT 2002
- large randomly generated problems ~ 2000 activities
- timetable at Faculty of Mathematics and Physics
- Interactivity
 - combination of automated solving with user interaction
 - solution is built step by step
 - presentation of sub-results during execution
 - working with feasible partial solutions

Interactive Heuristic Search Algorithm

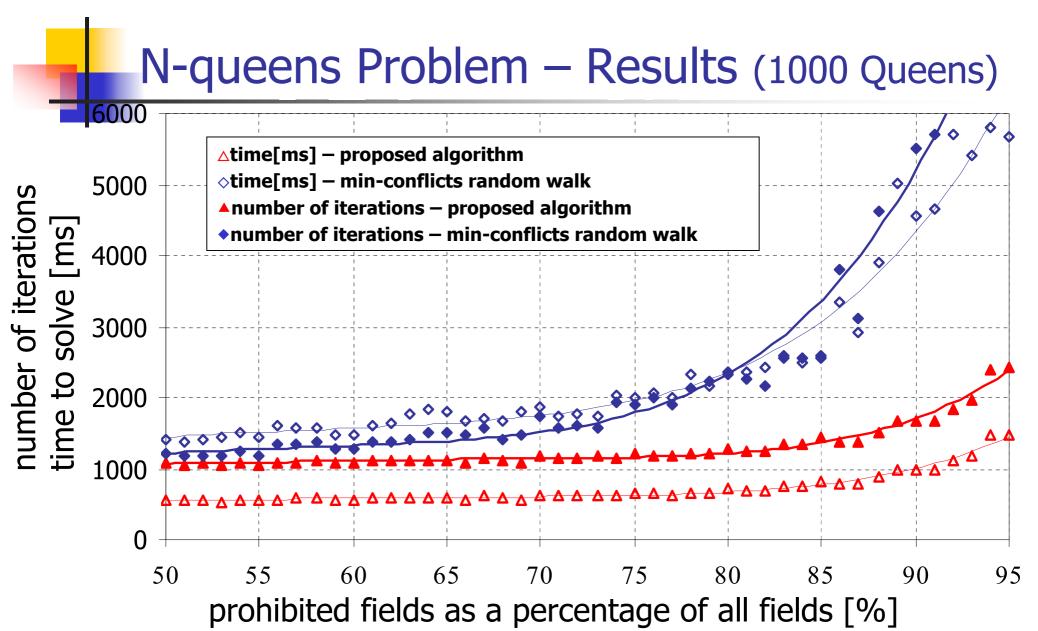
- Basic Approaches
 - local search
 - backtracking based search
- Interactive Solving Algorithm
 - forward based search
 - works in iterations
 - extending feasible partial solution
 - interactivity
 - can provide a sub-result even in over-constrained problem

Interactive Heuristic Search Algorithm

```
procedure solve (unassigned, solution, max iter)
    // unassigned is a list of un-assigned variables
    // solution is a partial solution (empty at the beginning)
           e.g. a list (variable, assigned value)
    iterations=0:
    while unassigned non empty & iterations<max iter
      & non user interruption do
        iterations ++;
        variable = selectVariable(unassigned, solution);
        unassigned -= variable;
        value = selectValue(variable, solution);
        unassigned += assign(solution, variable, value)
          // assign the variable and return violated variables
    end while;
    return solution;
end solve
```

Remarks

Variable Selection Criterion


- first-fail principle
 - improvement: Select randomly 20% of un-assigned variables first.
- Value Selection Criterion
 - best-fit value
 - improvement: Random selection of the top N values.
- Prevent Cycles
 - tabu-list
 - randomisation
- Soft Constraints
 - extension of variable and value selection criteria

Example: N-queens Problem

- Chessboard N × N
- N Queens
 - Task: Place queens on chessboard so that no queen is under a direct attack from any other one.
- Holes
 - prohibited fields on the chessboard
- Algorithm
 - select not-placed queen ~ column with no queen
 - place selected queen ~ choose row
 - remove conflicting queens ~ queens under a direct attack

N-queens Problem - Results

	presented algorithm		min-conflict		backtracking
number of	I.H.S.A.		random walk		full look ahead
	1.11.3.A.				
queens	time	# iter.	time	# iter.	time
100	4 ms	126	6 ms	151	113 ms
500	24 ms	552	18 ms	392	2 236 ms
1 000	86 ms	1041	68 ms	733	25 422 ms
2 000	338 ms	2039	266 ms	1328	
5 000	2 055 ms	50 <mark>58</mark>	1 688 ms	3242	
10 000	8 603 ms	10063	7 250 ms	6482	
25 000	49 061 ms	25039	65 664 ms	15819	
50 000	198 074 ms	500 <mark>35</mark>	473 980 ms	31535	

Conclusions, Further Work

- Interactive Heuristic Search Algorithm
 - intuitive generalization of lecture timetabling algorithm
 - interactivity
 - easily applicable to many CSPs
 - very promising results
 - easily extensible
 - new constraints, dependencies between activities, ...
- Further Work
 - lecture timetabling
 - tuning heuristics
 - more results (another real-world problems)
 - parallelism

References

- [1] T. Müller. *Interactive Timetabling*. Diploma Thesis, MFF UK, Prague, 2001
- [2] T. Müller and R. Barták. *Interactive Timetabling*. In Proceedings of the ERCIM workshop on constraints, Prague, 2001
- [3] T. Müller and R. Barták. *Interactive Timetabling: Concepts, Techniques, and Practical Results.* In Proceedins of the PATAT conference, Gent, 2002
- [4] T. Müller. *Interactive Heuristic Search Algorithm.* Submitted to CP 2002 Doctoral Programme, Ithaca, 2002
- [5] T. Müller. Some Novel Appraches to Lecture Timetabling. In Proceedings of the CPDC workshop, Gliwice, 2002