
Minimal Perturbation Problem
in Course Timetabling

Tomáš Müller1 and Hana Rudová2

1 Faculty of Mathematics and Physics, Charles University
Malostranské nám. 2/25, Prague, Czech Republic

muller@ktiml.mff.cuni.cz
2 Faculty of Informatics, Masaryk University
Botanická 68a, Brno 602 00, Czech Republic

hanka@fi.muni.cz

Abstract. Many real-life problems are dynamic, with changes in the
problem definition occurring after a solution to the initial formulation
has been reached. The minimal perturbation problem incorporates these
changes, along with the initial solution, as a new problem whose solu-
tion must be as close as possible to the solution of an initial problem.
A new iterative forward search algorithm is proposed to solve minimal
perturbation problems. Significant improvements to the solution qual-
ity are achieved by including new conflict-based statistics. The methods
proposed were applied to find a new solution to an existing large scale
class timetabling problem at Purdue University, incorporating the initial
solution and additional input changes.

1 Introduction

Most existing solvers are designed for static problems. These problems can be
expressed, solved by appropriate means, and the solution applied without any
change to the problem statement. Many real life problems [8, 14, 13, 10], however,
are subject to change. Additional input requirements produce a new problem
derived from the original. The dynamics of such a problem may require changes
during the solution process, or even after a solution is generated. In many real
situations, it is necessary to change the solution process such that dynamic
aspects of the problem definition are taken into account.

Problem changes may result from changes to environmental variables, such
as broken machines, delayed flights, or other unexpected events. Users may also
specify new properties based on a solution found so far. The goal is to find an
improved solution for the user. Naturally, the problem solving process should
continue as smoothly as possible after any change in the problem formulation.
In particular, the solution of the altered problem should not differ significantly
from the solution found for the original formulation. There are several reasons to
keep a new solution as close as possible to the existing solution. If the solution
has already been published, such as the assignment of gates to flights, frequent
changes would confuse passengers. Moreover, changes to a published solution



may necessitate other changes if initially satisfied wishes of users are violated.
This may create an avalanche reaction.

Our work is motivated by the class timetabling problem at Purdue Univer-
sity [12]. Here timetables for each semester are created nearly a semester in
advance. Once timetables are published they require many changes based on
additional input. These changes must be incorporated into the problem solution
with minimal impact on any previously generated solution. Thus, the primary
focus of our work is to provide support for making minimal changes to the gen-
erated timetable.

Our problem solver is based on constraint satisfaction techniques [3] which are
frequently applied to solve timetabling problems [6, 12, 10]. Dynamic constraint
satisfaction [8, 14] is able to cover dynamic aspects in the problem. The minimal
perturbation problem as defined in [1, 13], allows us to express our desire to keep
changes to the solution (perturbations) as small as possible.

Dynamic problems appear frequently in real-life planning and scheduling
applications where the task is to ”minimally reconfigure schedules in response
to a changing environment” [13]. Dynamic changes in context of timetabling
problems has started to be studied at [5]. A survey of existing approaches to
dynamic scheduling can be found in [8]. In the annotated bibliography on dy-
namic constraint solving [14], it is notable that only four papers were devoted
to the problem of minimal changes. The minimal perturbation problem was de-
scribed formally in [13] and solved by a combination of linear and constraint
programming. We have extended this definition in [1] and proposed a solution
algorithm based on the Branch& Bound algorithm. An algorithm inspired by
heuristic repair and limited discrepancy search was proposed in [11].

In this paper, we introduce a new iterative forward search algorithm to solve
the minimal perturbation problem. It is based on earlier work on solving methods
for the static (initial) problem [10]. The generality of the method allows solving
the initial problem. The basic difference in application is that optimization of
the number of changes (perturbations) is not included while solving the initial
problem. Our algorithm is close to local search methods [9]; however, it maintains
partial feasible assignments as opposed to the complete conflicting assignments
characteristic of local search. Similar to local search, we process local changes in
the assignment. This allows us to generate a complete solution and to improve
the quality of the assignment at the same time.

New conflict-based statistics are proposed to improve the quality of the final
solution. Conflicts during the search are memorized and their potential repetition
is minimized. Conflict-based heuristics were successfully applied in earlier works
[4, 7]. In our approach, the conflict-based statistics work as advice in the value
selection criterion. They help to avoid repetitive, unsuitable assignments of the
same value to a variable by memorizing conflicts caused by this assignment in
the past. The heuristics proposed also do not limit the number of memorized
conflicts and assignments. We have extended our search algorithm using these
conflict-based statistics, but this is a general strategy that could be applied in
other problem solvers.



The following section of this paper presents a description of the timetabling
problem that motivates our work. Section 3 describes the iterative forward search
algorithm. The subsequent section concentrates on conflict-based heuristics and
their inclusion in the search algorithm is defined. The solution of our class
timetabling problem is discussed in Sec. 5. Short summary of implementation
together with experimental results for the minimal perturbation and initial prob-
lem conclude the paper.

2 Motivation – Timetabling Problem

The primary purpose of our work is to solve a real timetabling problem at
Purdue University (USA). Here the timetable for large lecture classes is con-
structed by a central scheduling office in order to balance the requirements of
many departments offering large classes that serve students from across the
university. Smaller classes, usually focused on students in a single discipline,
are timetabled by “schedule deputies” in the individual departments. Such a
complex timetabling process, including subsequent student registration, takes
a rather long time. Initial timetables are generated about a half year before
the semester starts. The importance of creating a solver for a dynamic problem
increases with the length of this time period and the need to incorporate the
various changes that arise.

Rescheduling of classes in the timetable for large lectures is the primary focus
of this paper. This problem consists of about 750 classes having a high density
of interaction that must fit within 41 lecture rooms with capacities up to 474
students. Course demands of almost 29,000 students out of a total enrollment
of 38,000 must also be considered. Based on course demands, we must consider
about 20,000 constraints between two classes to be taught at different times.

The timetable maps classes (students, instructors) to meeting locations and
times. Information from initial enrollment to courses can be expected before
any timetable is generated. Final enrollment is processed once the locations and
times are published. A major objective in developing an automated system is to
minimize the number of potential student course conflicts which occur during
this process. This requirement substantially influences the automated timetable
generation process since there are many specific course requirements in most
programs of study offered by the University.

To minimize the potential for time conflicts, Purdue has historically sub-
scribed to a set of standard meeting patterns. With few exceptions, 1 hour x
3 day per week classes meet on Monday, Wednesday, and Friday at the half
hour. 1.5 hour x 2 day per week classes meet on Tuesday and Thursday during
set time blocks. 2 or 3 hours x 1 day per week classes must also fit within specific
blocks, etc. Generally, all meetings of a class should be taught in the same loca-
tion. Such meeting patterns are interesting in the problem solution as it allows
easier changes between classes having same or similar meeting patterns.

Another important constraint on the problem solution is instructor availabil-
ity and instructor time preferences. Room availability is a also a major constraint



for Purdue. In addition to room capacity, it was necessary to consider specific
equipment needs and the suitability of the room’s location.

Another aspect of the timetabling problem that must be considered is the
need to perform student sectioning. Most of the classes in the large lecture
problem (about 75%) correspond to single-section courses. Here we have exact
information about all students who wish to attend a specific class. The remaining
courses are divided into multiple sections. In this case, it is necessary to divide
the students enrolled to each course into sections that will constitute the classes.

Currently the timetable for Purdue University is constructed by a manual
process. We have proposed an automated timetabling system to solve the initial
problem [12]. This solution was based on constraint logic programming (CLP)
with soft constraints. The CLP solver is currently under comparison with a new
solver described in this paper.

3 Iterative Forward Search Algorithm

In this section, an iterative forward search algorithm is presented. It is based
on local search methods [9]. In contrast to classical local search techniques, it
operates over a feasible, though not necessarily complete, solution. In such a
solution, some variables can be left unassigned; however, all hard constraints on
assigned variables must be satisfied. Similar to backtracking based algorithms,
this means that there are no violations of hard constraints.

Working with feasible incomplete solutions has several advantages compared
to the complete infeasible solutions that usually occur in local search techniques.
For example, when the solver is not able to find a complete solution, a feasible one
can be returned, e.g., a solution with the least number of unassigned variables
found. Especially in interactive timetabling applications, such solutions are much
easier to visualize, even during the search, since no hard constraints are violated.
For instance, two lectures never use a particular resource (e.g., a classroom) at
the same time. Moreover, because of the iterative character of the search, the
algorithm can easily start, stop, or continue from any feasible solution, either
complete or incomplete.

The search is processed iteratively (see Fig. 1 for algorithm). During each
step, an unassigned or assigned variable is initially selected. Typically an unas-
signed variable is chosen. An assigned variable may be selected when all variables
are assigned but the solution is not good enough. For example, when there are
still many violations of soft constraints. Once a variable is selected, a value from
its domain is chosen for assignment. Even if the best value is selected (what-
ever ‘best’ means), its assignment to the selected variable may cause some hard
conflicts with already assigned variables. Such conflicting variables are removed
from the solution and become unassigned. Finally, the selected value is assigned
to the selected variable.

The algorithm attempts to move from one (partial) feasible solution to an-
other via repetitive assignment of a selected value to a selected variable. During
this search, the feasibility of all hard constraints in each iteration step is en-



procedure solve(initial) // initial solution is the parameter
iteration = 0; // iteration counter
current = initial; // current solution
best = initial; // best solution
while canContinue (current, iteration) do

iteration = iteration + 1;
variable = selectVariable (current);
value = selectValue (current, variable);
if variable ∈ current.Unassigned then

current.Assigned = current.Assigned ∪ {variable};
current.Unassigned = current.Unassigned\{variable};

Conflicting = find conflicting variables(current);
current.Unassigned = current.Unassigned ∪ Conflicting;
current.Assigned = current.Unassigned\Conflicting;
assign(variable,value);
if better (current, best) then

best = current
return best

Fig. 1. Pseudo-code of the search algorithm.

forced by removing the conflicting variables. The search is terminated when the
requested solution is found or when there is a timeout, expressed e.g., as a max-
imal number of iterations or available time being reached. The best solution
found is then returned.

Each current solution must be feasible at all times. Assignment of a value
to a variable can cause conflicts with other variables however. For example, if
there is a hard all different constraint for variables A, B and C, and variable A is
assigned the value 3 while variable B, together with the value 3, is selected during
the following step. The value of A becomes unassigned during the assignment
B = 3. In our algorithm, the function find conflicting variables computes
the set of conflicting variables. These variables are unassigned in the next step.

The above algorithm schema is parameterized by several functions, namely

– the variable selection (function selectVariable ),
– the value selection (function selectValue ),
– the termination condition (function canContinue ) and
– the solution comparator (function better ).

These functions are discussed in the following sections.

Termination Condition The termination condition determines when the algo-
rithm should finish. For example, the solver should terminate when the maximal
number of iterations or some other given timeout value is reached. Moreover, it
can stop the search process when the current solution is good enough, e.g., all
variables are assigned and/or some other solution parameters are in the required
ranges. For example, the solver can stop when all variables are assigned and less



than 10% of soft constraints are violated. Termination of the process by the user
can also be a part of the termination condition.

Solution Comparator The solution comparator compares two solutions: the
current solution and the best solution found. We are looking for a solution with
smaller number of unassigned variables, and in case when these numbers are
equal, the solution with less violated soft constraints should be selected. This
comparison can be based on several criteria. For example, it can lexicographically
order solutions according to the criteria: number of unassigned variables (smaller
number is better) or number of violated soft constraints. Soft constraints can
be weighted according to their importance and/or preferences. Then, a sum of
weights of violated soft constraints can be used for the second criteria. So, we
are looking for a solution with smaller number of unassigned variables together
with smaller number of violated soft constraints.

Variable Selection As mentioned above, the algorithm presented requires a
function that selects a variable to be (re)assigned during the current iteration
step. This problem is equivalent to a variable selection criterion in constraint
programming. There are several guidelines for selecting a variable [3]. In local
search, the variable participating in the largest number of violations is usually
selected first. In backtracking-based algorithms, the first-fail principle is often
used, i.e., a variable whose instantiation is most complicated is selected first. This
could be the variable involved in the largest set of constraints or the variable
with the smallest domain etc.

We split variable selection criterion into two cases. If some variables remain
unassigned, the worst variable among them is selected, i.e., first-fail principle is
applied. This may, for example, be the variable with the smallest domain or with
the highest number of hard and/or soft constraints.

The second case occurs when all variables are assigned. Because the algorithm
does not need to stop when a complete feasible solution is found, the variable
selection criterion for such case has to be considered as well. Here all variables
are assigned but the solution is not good enough, e.g., in the sense of violated
soft constraints. We choose a variable whose change of a value can introduce the
best improvement of the solution. It may, for example, be a variable whose value
violates the highest number of soft constraints.

It is possible for the solution to become incomplete again after such an iter-
ation because a value which is not consistent with all hard constraints can be
selected in the value selection criterion. This can also be taken into account in
the variable selection heuristics.

To avoid cycling and to improve the search, this variable selection criterion
can be randomized. There are several methods [9] which can be applied, e.g.:

– a random walk technique (with the given probability p a random variable is
selected),

– not the worst variable, but a random selection of worse enough variable (e.g.,
from the top N worst variables), or



– a selection of a variable according to a probability based on the above men-
tioned criteria (e.g., roulette wheel selection).

Value Selection After a variable is selected, we need to find a value to be
assigned. This problem is usually called “value selection” in constraint program-
ming [3]. Typically, the most useful advice is to select the best-fit value. So, we
are looking for a value which is most preferred for the variable and also which
causes the least trouble. This means that we need to find a value with minimal
potential for future conflicts with other variables. Note that we are not using
constraint propagation explicitly in our algorithm. However, the power of con-
straint propagation is hidden in the value selection (it roughly corresponds to a
forward checking method [3]).

For example, a value which violates the smallest number of soft constraints
among values with the smallest number of hard conflicts (i.e., values whose as-
signment to the selected variable violate the smallest number of hard constraints)
can be selected.

To avoid cycling, there are several methods [9] how to randomize the value
selection procedure. For example, it is possible to select the N best values for
the variable and choose one of them randomly. Or, it is possible to select a
set of values so that the heuristic evaluation for the worst value in this group
is maximally p percent higher than the heuristic evaluation of the best value
(when smaller value means better value). Again, the value is selected randomly
from this group. This second rule inhibits randomness if there is a single very
good value.

3.1 Minimal Perturbation Problem

Let us first describe the meaning of perturbation in our approach. The changed
problem differs from the initial problem by input perturbations. An input pertur-
bation means that a variable must have different values in the initial and changed
problem because of some input changes (e.g., course must be scheduled at dif-
ferent time in the changed problem). The solution to the minimal perturbation
problem (MPP) [1, 13] can be evaluated by the number of additional perturba-
tions. They are given by subtraction of the final number of perturbations and the
number of input perturbations. An alternative approach is to consider variables
in initial and new problem which were assigned differently [11, 1]. As before, we
need to minimize the number of such differently assigned variables.

Despite the local search nature of the algorithm, there are some adjustments
needed to be able to effectively solve the MPP. The task of these adjustments
is to minimize the number of additional perturbations. The easiest way to do
this is to adopt variable and value selection heuristics which prefer the previous
assignments (but not all the time, to avoid cycling).

For example, value selection heuristics can be adopted to select an initial
value (if it exists) randomly with a probability P (it can be rather high, e.g.,
between 50-90%). If the initial value is not selected, original value selection can



be executed. Also, if there is an initial value in the set of best-fit values (e.g.,
among values with the minimal number of hard and soft conflicts), the initial
value can be preferred as well. Otherwise, a value can be selected randomly from
the constructed set of best-fit values. A disadvantage of such selection is that
the probability P has to be selected carefully: if it is too small, the search can
easily move away and the number of additional perturbations will grow during
the search. If it is too high, the search will stick too much with the initial solution
and, if there is no solution with a small amount of additional perturbations it
will be hard to find a feasible solution.

Another approach is to limit the number of additional perturbations during
the search. Furthermore, like in branch and bound, such a limit can be decreased
when a feasible complete solution with the given number of perturbations is
found. For example, if the number of additional perturbations is equal to or
greater than the limit, the initial value has to be selected. Otherwise, if the
number of additional perturbations is below the limit, the original value selection
strategy is followed. The number of additional perturbations can also include
variables that are not assigned yet whose initial values create a hard conflict
with the current assignments.

The above approaches can also be combined together, which can help to
divide their influence during the search.

Variable selection heuristics can also be adopted to help find a solution with
a small number of perturbations. For example, when all variables are assigned,
a variable that has an initial value but is not assigned should be selected, e.g.,
randomly among all variables that have no initial value assigned, and that par-
ticipates in the highest number of violated soft constraints.

4 Conflict-based Statistics

In this section, a very promising extension of the search algorithm is presented.
The idea behind it is to memorize conflicts and prohibit their potential repetition.
When a value, v0, is assigned to a variable, V0, hard conflicts with previously
assigned variables (e.g., V1 = v1, V2 = v2, ... Vm = vm) can occur. These variables
V1,...Vm have to be unassigned before value v0 is assigned to variable V0. These
unassignments, together with the reason for their unassignment (e.g., assignment
V0 = v0), and a counter tracking how many times such an event occurred in the
past, is stored in memory.

Later, if a variable is selected for an assignment again, the stored information
about repetition of past hard conflicts can be taken into account, e.g., in the value
selection heuristics. For example, if the variable V0 is selected for an assignment
again (e.g., because it became unassigned as a result of later assignments), we
can weight the number of hard conflicts created in the past for each possible
value of the variable. In the above example, the existing assignment V1 = v1 can
prohibit the selection of value v0 for variable V0 if there is again a conflict with
the assignment V1 = v1.



Moreover, such statistics can also be used in the opposite direction. If variable
V2 is selected for assignment, besides informing us how many times each value
of this variable conflicted with previously assigned variables in the past, it also
tells how many times values of other variables caused the unassignment of the
value being considered for the selected variable. For example, if for a particular
value of the variable V2, we already know that a later assignment of V0 = v0

will cause V2 to be unassigned, we can try to minimize such future conflicts by
selecting a different value of the variable V2 while V0 is unassigned.

Conflict-based statistics is a data structure that memorizes hard conflicts
which have occurred during the search together with their frequency (e.g., that
assignment V0 = v0 caused c1 times an unassignment of V1 = v1, c2 times of
V2 = v2 ... and c3 times of Vm = vm).

In our implementation, there is a structure for each assignment stating how
many times an assignment came in conflict with subsequent assignments and
was therefore unassigned.

A 6= a ⇐


3×B = a
4×B = c
2× C = a

120×D = a

The above example of this structure expresses that variable A lost its assignment
3 times because of later assignments of value a to variable B, 4 times because
B is later assigned a value c, etc.

This structure is being used in the value selection heuristics to evaluate ex-
isting and potential conflicts with the assigned and unassigned variables respec-
tively. For example, if there is a variable B selected and if the value a is in conflict
with an assignment A = a, we know that a similar problem has already occurred
3× in the past, and the conflict A = a is weighted with this number (the weight
is actually incremented by one, not to ignore new, not yet rated conflicts). Simi-
larly, if there is a variable A selected and if the variable B is not yet assigned, we
know that its potential assignment B = a already caused 3× an unassignment
A = a and the assignment B = c caused such problem 4×. So, there is a chance
that if a value a or c is selected to be assigned to the variable B later on, it can
cause (e.g., together with some other assignments) an unassignment of A = a.
We weight these potential conflicts also with negative weight expressing how
many other conflicts will cause these potential assignments (B = a and B = c in
our example). So, for example if B = c is already bad enough (it is in many other
hard conflicts with assigned variables), value c will probably not be selected for
variable B later on and we do not need bother with it too much.

Stated in another way, this approach helps the value selection heuristics to
select a value that might cause more conflicts than another value, but these
conflicts occurred less often, and therefore they have a lower weighted sum. This
can help the search a lot to get out of a local minimum. It also tries to minimize
future conflicts.



Moreover, these conflict-based statistics can be easily extended to allow some
aging of the older conflicts. There is an aging coefficient introduced which mul-
tiplies all counters after each iteration step (for example, it is approximately
0.9993 for a weight of a single conflict to drop to 1/2 after 1000 iterations). The
conflict-based statistics’ weighted counters are then

∆iteration(conflict) = iterationcurrent − iterationwhen the conflict occurred

counterweighted =
∑

conflict occurrences w · aging coef∆iteration(conflict)

where w is a weight of a single conflict and the sum goes over all conflicts in the
counter multiplying each conflict weight with the aging coefficient to the power
of how many iterations have passed since that conflict.

The implementation of the aging mechanism is rather simple. The weighted
counter needs to be updated only when a new conflict occurs. Besides a counter
weight, we need to memorize the iteration number, when the latest conflict
occurred (and the weighted counter was updated). The current conflict weight
is then the memorized weighted counter aged by the number of iterations which
have passed since its last update

∆iteration = iterationcurrent − iterationlatest counter update

counterweighted = aging coef∆iteration

and a weighted counter incrementent is then, similarly

∆iteration = iterationcurrent − iterationlatest counter update

counterweighted = counterweighted · aging coef∆iteration + w
iterationlatest counter update = iterationcurrent

5 Solution for Timetabling Problem

In this section we will discuss an application of the above described algorithm
for the large lecture timetabling problem at Purdue University. The modelling
part will be described first, followed by a description of the algorithm.

5.1 Problem Representation

Due to the set of standardized time patterns and administrative rules in place
at the university, it is generally possible to represent all meetings of a class
by a single variable. This tying together of meetings considerably simplifies the
problem constraints. Most classes have all meetings taught in the same room,
by the same instructor, at the same time of day. Only the day of week differs.
Moreover, these days and times are mapped together with the help of meeting
patterns, e.g., a 2 hours × 3 day per week class can be taught only on Monday,
Wednesday, Friday, beginning at 5 possible times (7:30, 9:30, 11:30, 1:30, 3:30).

In addition, all valid placements of a course in the timetable have a one-to-
one mapping with values in the variable’s domain. This domain can be seen as



a subset of the Cartesian product of the possible starting times, rooms, etc. for
a class represented by these values. Therefore, each value encodes the selected
time pattern (some alternatives may occur, e.g., 1.5 hour × 2 day per week may
be an alternative to 1 hour × 3 day per week), selected days (e.g., a two meeting
course can be taught in Monday-Wednesday, Tuesday-Thursday, Wednesday-
Friday), and possible starting times. A value also encodes the instructor and
selected meeting room. Each such placement also encodes its preferences (soft
constraints), combined from preference for time, room, building and the room’s
available equipment. Only placements with valid times and rooms are present
in a class’s domain. For example, when a computer (classroom equipment) is
required, only placements in a room containing a computer are present. Also,
only rooms large enough to accommodate all the enrolled students can be present
in valid class placements. Similarly, if a time slice is prohibited, no placement
containing this time slice is in the class’s domain.

The variable and value encodings described above leave us only two types of
hard constraints to be implemented: resource constraints (expressing that only
one course can be taught by an instructor or in a particular room at the same
time), and group constraints (expressing relations between several classes, e.g.,
that two sections of the same lecture can not be taught at the same time, or
that some classes have to be taught immediately after another).

There are three types of soft constraints in this problem. First, there are
soft requirements on possible times, buildings, rooms, and classroom equipment
(e.g., computer or projector). These preferences are expressed as integers be-
tween −2 (strongly preferred) and 2 (strongly discouraged). As mentioned above,
each value, besides encoding a class’s placement (time, room, instructor), also
contains information about the preference for the given time and room. Room
preference is a combination of preferences on the choice of building, room, and
classroom equipment. The second group of soft constraints is formed by student
requirements. Each student can enroll in several classes, so the aim is to min-
imize the total number of student conflicts among these classes. Such conflicts
occur if the student cannot attend two classes to which he or she has enrolled
because these courses have overlapping times. Finally, there are some group con-
straints (additional relations between two or more classes). These may either be
hard (required or prohibited), or soft (preferred), similar to the time and room
preferences (from −2 to 2).

5.2 Search Algorithm

In Sec. 3, we have described four functions which parameterize the algorithm
proposed. Here we will describe their exact settings in our timetabling solver.

The termination condition stops the search when the solution is complete
and good enough (expressed as number of perturbations and the sum of violated
soft time and room preferences and the total number of student conflicts). It also
allows for the solver to be stopped by the user. Characteristics of the current
and the best achieved solution, describing the number of assigned variables, time



and classroom preferences, total number of student conflicts, etc., are visible to
the user during the search.

The solution comparator prefers a more complete solution (with smaller num-
ber of unassigned variables) and a solution with a smaller number of perturba-
tions among solutions with the same number of unassigned variables. If both
solutions have the same number of unassigned variables and perturbations, the
solution with fewer violations of time and classroom soft preferences combined
with student conflicts is selected.

The variable selection is based on a weighted sum (weights can be defined
by the user) of several criteria:

– variable domain size (number of possible placements),
– number of previous assignments,
– number of group constraints in which the variable participates,
– if the variable has initial placement, number of hard conflicts on its ini-

tial placement (i.e., number of variables which become unassigned when the
initial value is selected).

It also allows for definition of the random walk probability and the choice be-
tween roulette wheel and worst variable selection. When all variables are as-
signed, the variable with the worst evaluation is selected. Such evaluation is given
for each variable by the weighted sum of value ordering criteria for optimization
(see below). This variable promises the best improvement in optimization.

We have implemented hierarchical handling of value section criteria. There
are three levels of comparison. In each level a weighted sum of the criteria de-
scribed below are computed. Only solutions with the smallest sum are considered
in the next level. The weights express how quickly a complete solutions should
be found (e.g., only hard constraints are satisfied in the first level sum), distance
from the initial solution (MPP), and a weighting of major preferences, includ-
ing time, classroom requirements and student conflicts. In the third level, some
minor criteria are considered. These include not using rooms that are too large
(having more than 50% excess seats) and minimizing the number of unsched-
uled half-hours in rooms between classes. Such half-hours cannot be used since
all events require at least one hour.

These sums order the values lexicographically: the best value having the
smallest first level sum, the smallest second level sum among values with the
smallest first level sum, and the smallest third level sum among these values. As
mentioned above, this allows diversification between the importance of individual
criteria. Furthermore, the value selection heuristics also support some limits,
e.g., that all values with a first level sum smaller than a given percentage above
the best value (typically 20%) will go to the second level comparison and so
on. This allows for the continued feasibility of a value which is not the best,
but is only slightly worse then the best, yet may be much better in the next
level of comparison. If there is more than one solution after these three levels of
comparison, one is selected randomly.

The value selection heuristics also allow for random selection of a value with
a given probability (typically 2%, random walk) and for MPP to select the initial



value (if it exists) with a given probability (e.g., 70%) and to limit the number
of additional perturbations.

Criteria used in the value selection heuristics can be divided into two sets.
Criteria in the first set are aimed to generate complete assignment:

1. number of hard conflicts, weighted by their previous occurrences (see conflict-
based statistics section);

2. number of potential conflicts, weighted by their previous occurrences (see
conflict-based statistics section);

3. number of assignments (how many times the value has already been assigned
to the variable).

Other criteria allows to achieve better results during optimization:

4. time preference delta: time preference of the value decreased by time prefer-
ences of the values assigned to variables, which have hard conflicts with the
value (they must be unassigned, if the value is selected);

5. initial value delta: 1 if the value is initial, 0 otherwise, decreased by the
number of initial values assigned to variables with hard conflicts with the
value (they must be unassigned, if the value is selected);

6. number of student conflicts caused by the value if it is assigned to the vari-
able;

7. number of hard student conflicts – same as the number of student conflicts.
However, only conflicts between single section courses are counted (for details
see Sec. 5.3);

8. preferences of satisfied or violated soft group constraints caused by the value
if it is assigned to the variable;

9. soft classroom preference caused by a value if it is assigned to the variable
(combination of the placement’s building, room, and classroom equipment
compared with preferences);

10. soft time preference caused by a value if it is assigned to the variable;
11. delta of unused half-hours: number of empty half-hour time segments be-

tween classes that arise, minus those which disappear if the value is selected;
12. classroom is too big: 1 if the selected classroom has more than 50% more

seats than the number of the students enrolled in the class.

Let us emphasize that these criteria are needed for optimization only, i.e., they
are not needed to find a feasible3 solution. Even more, assigning different weight
to particular criteria allows to influence value of the corresponding objective
function (see Fig. 3 with comparison for criteria 4 and 7).

5.3 Student scheduling

Many courses at Purdue University consist of several sections, with students
enrolled in the course divided among them. Sections are often associated together

3 Feasible solution must satisfy hard constraints.



by some constraints. For example, sections of the same course should not overlap.
Each such section forms one class which has its own preferences. Therefore each
is treated separately – there is a variable for each section.

An initial sectioning of students into course sections is processed. This stu-
dent sectioning is based on Carter’s [2] homogeneous sectioning and it is intended
to minimize future student conflicts. However, there is still a possibility of im-
proving the solution with respect to the number of student conflicts. This can
be achieved via section changes during the search.

In the current implementation, sectioning is altered only by switching student
enrollments between two different sections of the same course. Each student
enrollment in a course with more than one section is processed. An attempt
is made to switch it with a student enrollment from a different section. If this
switch decreases the total number of student conflicts, it is applied.

We have compared two possibilities for switching these student enrollments.
The first possibility is during the search, after a course is placed in the timetable.
If a class is part of a course with multiple sections, an attempt is made to switch
students with other sections of the course. Also, when a course has only one
section, the system tries to move some students in multi-section courses who
have a conflict with this class.

The second possibility, which appears to be much faster, but with similar
results, is to switch students only when the best solution is found. In this case,
the students are switched in the current solution, before it is stored as the best
solution. All classes are processed and attempted switches are made between
students in the same course. Note that a switch of a student enrollment can be
followed with subsequent switches, so that classes can be processed more than
once.

In the case where student enrollments are not switched after each iteration,
counting student enrollments in the solution comparator and value selection cri-
terion can be misleading (student conflicts, which can be eliminated by switching
student enrollments later on do not matter). Therefore, “hard” student conflicts
are counted as well. These consist only of student conflicts that occur between
two single-section courses.

In the following experiments, the results using the second presented approach
are discussed and compared with a case when no switching of student enrollments
is used. Concerning comparison of the presented approaches in this section, the
resultant numbers of violated student enrollments are the very same, but the
first approach is more than ten times slower.

6 Implementation and Experiments

The timetabling system is implemented in Java. It contains a general imple-
mentation of the iterative search algorithm described above. The general solver
operates over variables and values with a selection of basic general heuristics,
comparison, and termination functions. It may be customized to fit a particular



problem (as it has been extended for Purdue University timetabling) by imple-
menting variable and value definitions, adding hard and soft constraints, and
extending the algorithm’s parametric functions.

Besides the above discussed solver, the timetabling application for Purdue
University also contains a web-based graphical user interface (written using Java
Server Pages) which allows management of several versions of the data sets
(input requirements, solutions, changes, etc.), browsing the resultant solutions
(see Fig. 2), and tracking and managing changes between them.

Fig. 2. Generated timetable at web-based graphical user interface.

The following tests were performed on the complete Fall 2001 data set4,
including 747 classes to be placed in 41 classrooms. The classes included represent
81,328 course requirements for 28,994 students. The results presented here were
computed on 1GHz Pentium III PC running Windows 2000, with 512 MB RAM
and J2SDK 1.4.2.

Below, we present two types of experiments: experiments finding an initial
solution (e.g., when all requirements are placed in the system), followed by ex-
periments on the minimal perturbation problem (e.g., where there is an existing
solution plus a set of changes to be applied to it). Solving an initial problem can

4 Since the system has recently started to be used, we are expecting to have some
results on the Fall 2004 data set soon.



be seen as a special case of MPP where all variables are new and therefore have
no initial values.

6.1 Initial Problem

Figure 3 shows the computational results from 6 independent tests. Time refers

Test case I. II. III. IV. V.

Time [min] 53.80 17.96 25.11 56.06 23.23

Student conflicts [%] 0.50 0.44 0.35 2.29 1.71

Preferred time [%] 95.67 88.72 44.61 90.50 46.31

Preferred room [%] 55.63 42.38 52.98 52.32 62.25

Useless half-hours [%] 7.25 7.89 8.53 7.57 6.12

Too big room [%] 23.16 18.47 22.89 22.89 22.76

(a) Conflict-based statistics (CBS) on

VI.

160.19

0.51

48.09

49.01

6.44

23.96

(b) CBS off

Fig. 3. Solutions of the initial problem

to the amount of time required by the solver to find the presented solution. Stu-
dent conflicts gives the percentage of unsatisfied requirements for courses chosen
by students. Preferred time and preferred room estimate the satisfaction of time
and room preferences respectively. The presented percentages are stating the
ratios between sums of achieved and the best potential preferences over all the
classes. Useless half-hours gives the percentage of unused half-hour segments
that do not adjoin other segments (and are therefore unschedulable) to the to-
tal number of unused half-hour segments in the solution. Finally, too big room
estimates the percentage of classes placed in rooms whose capacity exceeds the
number of enrolled students by more than 50 percent.

A complete solution was found on every attempt for solutions in Fig. 3(a)
using conflict-based statistics. The best solution found in each run within 60 min-
utes is presented. The very first complete solution is typically found in between
5 and 20 minutes.

The first three solutions (marked I., II. and III.) use move students between
sections, different emphasis is placed on time preferences (value selection crite-
rion 4 in Sec. 5.2) and student conflicts (value selection criterion 7 in Sec. 5.2)
in each. Solution I. places heavier weight on faculty time preferences while solu-
tion III. focuses on minimizing student conflicts. The fourth and fifth solutions
(marked IV. and V.) present results computed without moving students between
sections. Different weightings of faculty time preferences and student conflicts



were used in solutions IV. and V. as well. Solution V. attempts to minimize the
number of student conflicts without shifts between sections.

A result achieved without using the conflict-based statistics approach is pre-
sented in Figure 3(b). The solver was not able to find a complete solution within
180 minutes in this case. The column marked VI. presents the best solution
found within this amount of time. Four variables remained unassigned.

In all test cases, room preferences were considered much less important than
time preferences and student conflicts. Unused half-hours (i.e., empty half hours
in rooms with classes placed both before and after) and placements in rooms
that are too large (i.e., rooms with 50% more seats than required for a particular
class) are supplementary criteria.

In our second experiment, we would like to show that the general ideas of it-
erative forward search algorithm together with conflict-based statistics suffice to
solve our timetabling problem. The role of heuristics can be minimized, special
variable ordering is not needed, and value ordering heuristics needs to be defined
for optimization only. Results from this experiment are presented in Fig. 4. All

Test cases A B

Time [min] 36.72 ± 12.68 3.51 ± 0.89

Student conflicts [%] 0.60 ± 0.07 2.31 ± 0.44

Preferred time [%] 91.72 ± 0.93 3.90 ± 3.32

Preferred room [%] 56.69 ± 5.14 23.84 ± 5.71

Useless half-hours [%] 6.67 ± 1.4 6.02 ± 1.31

Too big room [%] 23.29 ± 0.50 23.41 ± 0.49

Fig. 4. Solution of the initial problem with random variable ordering.

test cases use only random variable ordering (unassigned variable was randomly
selected; if it does not exist any variable is randomly selected). Each column
includes the best achieved solutions of 10 independent runs found within 60
minute time limit. The average value together with the root mean-square values
are presented. Test cases in the column A uses the same value ordering as above
(see Sec. 5.2). Since any variable can be selected several times while preserving
partial results, the importance of variable ordering seems to decrease in our al-
gorithm and random variable ordering is sufficient. Test cases in B uses value
ordering criteria 1 only. The average results for the first complete found solution
is presented here. Value ordering criteria needed for optimization were not pro-
cessed which results in poor optimization results. However, a complete solution
was found in all test cases much faster.



6.2 Minimal Perturbation Problem

The following experiments were conducted on one of the complete initial so-
lutions computed in the previous set of experiments (column II. of Figure 3).
Input perturbations were generated such that a given number of randomly se-
lected variables were not allowed to retain the values they were assigned in the
initial solution. Therefore, these classes can not be scheduled to the same place-
ment as in the initial solution (either room or starting time must be different).
Only variables with more than one value in their domains were used. For each

0

2

4

6

8

10

12

14

16

0 10 20 30 40 50 60 70 80 90 100
Input perturbations

A
dd

iti
on

al
 p

er
tu

rb
at

io
ns

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70 80 90 100
Input perturbations

A
dd

iti
on

al
 p

er
tu

rb
at

io
ns

 [%
]

Fig. 5. Absolute number of average additional perturbations (left) and average ad-
ditional perturbations in terms of percentage of the number of input perturbations
(right).

value of input perturbations tested, five different sets of input perturbations
(i.e., variables with initial values prohibited) were generated. The following fig-
ures show the average parameter values of the best solutions found within 30
minutes.

Figure 5 presents the average number of additional perturbations (variables
that were: not assigned to their initial values, i.e., either room or starting time
is different, though their initial values are not prohibited as for initial perturba-
tions). Additional perturbations are presented wrt. the absolute number of input
perturbation (i.e., up to about 13.4% of input perturbations is considered). The
best solution found within 30 minutes from each test is taken into account. The
number of additional perturbations grows with the number of input perturba-
tions. The highest proportion of additional perturbations occurs between 10 and
35 input perturbations.

The graph in the upper left of Figure 6 shows the average quality of the
resulting solutions in the same manner as presented in Figures 3. The lower
average quality of solutions, as a percentage of the initial solution results, is
illustrated by the graphs in the upper right and lower left (detail for the per-
centage between -6 and 10) of Figure 6. Because the initial solution is (at least
locally) optimal, and because the number of additional perturbations is the pri-



0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60 70 80 90 100
Input perturbations

A
vg

. s
ol

ut
io

n 
qu

al
ity

 [%
] 

Student conflicts Preferred time Preferred room

-10

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80 90 100
Input perturbations

A
ve

ra
ge

 s
ol

ut
io

n 
qu

al
ity

[%
 d

eg
ra

da
tio

n 
to

 in
iti

al
]

Useless half-hours Too big room

-6

-4

-2

0

2

4

6

8

10

0 10 20 30 40 50 60 70 80 90 100
Input perturbations

A
ve

ra
ge

 s
ol

ut
io

n 
qu

al
ity

[%
 d

eg
ra

da
tio

n 
to

 in
iti

al
]

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100
Input perturbations

Ti
m

e 
[m

in
]

Fig. 6. Average solution quality (top left), resulting in lower average quality of the
solution in terms of percentage of the initial solution (top right and bottom left in
detail), average time (bottom right).

mary minimization criteria, it is not surprising that the quality of the solution
declines with an increasing number of input perturbations. The parameter ex-
hibiting the largest increase is the number of student conflicts. Note, however,
that there are only 357 out of 81,328 course requirements in conflict in the input
solution. The weighting between time preferences, student conflicts, and other
parameters considered in the optimization can have a similar influence as seen
in the initial solutions.

Finally, the graph in the lower right of Figure 6 presents the average time
needed to find the best solution. Note that a 30 minutes time limit for finding a
best solution was set. The influence of his limit is seen mostly the right portion
of the chart, where the number of input perturbations exceed 50.

7 Conclusions

We have proposed and implemented a solution to a large scale university time-
tabling problem. Our proposal includes a new iterative forward search algorithm.
It is extended by conflict-based statistics which we believe can be generalized
to other search algorithms. Both ideas combined together suffice to solve the
problem and the role of additional heuristics can be minimized. Our problem



solver is able to construct a demand-driven timetable as well as incorporate
dynamic aspects. Our initial solution is able to satisfy the course requests of
more than 99% of students together with about 90% of time requirements. The
automated search was able to find suitable times and classrooms for all classes.
The dynamic experiments give us very promising results as well. Within 30
minutes, the solver was able to find a complete, high quality solution with a
slightly increased number of additional perturbations.

Our future research will include extensions of the proposed general algo-
rithm together with improvements to the implemented solver. We would like
to do an extensive study of the proposed Minimal Perturbation Problem solver
and its possible application to other, non timetabling-based problems. Also, our
approach must be validated using data sets from other semesters. We are also
planning to compare our results with the former CLP solver [12] we have imple-
mented. We are currently extending the CLP solver with some of the features
included here (e.g., moving students between sections) to present a fair compar-
ison.

Currently we are working on extensions to the implemented solver to cover
additional requirements and problem features required by Purdue University.
The strategy for computing perturbations needs to be extended as well. For
example, a change of the time is usually much worse than a movement to a
different classroom. The number of enrolled/involved students should also be
taken into account. Another factor is whether the solution has already been
published or not.

The most interesting future direction in the development of the algorithm
lies in its extension to constraint propagation. When there is a value assigned
to a variable, such assignment can be propagated to unassigned variables to
prohibit all values which come into conflict with the current assignments. The
information about such prohibited values can be propagated as well. Since there
is no backtracking, we need to memorize the reason why the value is prohibited
(e.g. a no-good set containing an assignment with the prohibited value). When
a variable becomes unassigned, the algorithm must be able to refresh all val-
ues which become prohibited as a result of the canceled assignment. Currently,
we have implemented such a propagation corresponding to the forward check-
ing method (i.e., there is no propagation over prohibited values). So far, it has
not brought any improvements to the current algorithm, the resultant program
was even slower. This is because the same work is already done in the value
selection heuristics (but only for values of the desired variable). Extension of
the implemented propagation technique and its possible conjunction with the
conflict-based heuristics is planned for future investigation.

Acknowledgements This work is supported by Purdue University. We would
like to thank our students for their assistance solving this problem and Purdue
staff who have helped in many ways. Our thanks also to Keith Murray for his
careful review and editing of the final drafts of this paper.



References

[1] Roman Barták, Tomáš Muller, and Hana Rudová. A new approach to modeling
and solving minimal perturbation problems. In Recent Advances in Constraints,
pages 233–249. Springer Verlag LNAI 3010, 2004.

[2] Michael W. Carter. A comprihensive course timetabling and student scheduling
system at the University of Waterloo. In Edmund Burke and Wilhelm Erben,
editors, PATAT 2000—Proceedings of the 3rd international conference on the
Practice And Theory of Automated Timetabling, pages 64–82, 2000.

[3] Rina Dechter. Constraint Processing. Morgan Kaufmann Publishers, 2003.
[4] Rina Dechter and Daniel Frost. Backjump-based backtracking for constraint sat-

isfaction problems. Artificial Intelligence, 136(2):147–188, 2002.
[5] Abdallah Elkhyari, Christelle Guéret, and Narendra Jussien. Solving dynamic

timetabling problems as dynamic resource constrained project scheduling prob-
lems using new constraint programming tools. In Edmund Burke and Patrick De
Causmaecker, editors, Practice And Theory of Automated Timetabling, Selected
Revised Papers, pages 39–59. Springer-Verlag LNCS 2740, 2003.

[6] Christelle Guéret, Narendra Jussien, Patrice Boizumault, and Christian Prins.
Building university timetables using constraint logic programming. In Edmund
Burke and Peter Ross, editors, Practice and Theory of Automated Timetabling,
pages 130–145. Springer-Verlag LNCS 1153, 1996.

[7] Narendra Jussien and Olivier Lhomme. Local search with constraint propagation
and conflict-based heuristics. Artificial Intelligence, 139(1):21–45, 2002.

[8] Waldemar Kocjan. Dynamic scheduling: State of the art report. Technical Report
T2002:28, SICS, 2002.

[9] Zbigniew Michalewicz and David B. Fogel. How to Solve It: Modern Heuristics.
Springer, 2000.

[10] Tomáš Muller and Roman Barták. Interactive timetabling: Concepts, techniques,
and practical results. In Edmund Burke and Patrick De Causmaecker, editors,
PATAT 2002—Proceedings of the 4th international conference on the Practice
And Theory of Automated Timetabling, pages 58–72, 2002.

[11] Yongping Ran, Nico Roos, and Jaap van den Herik. Approaches to find a near-
minimal change solution for dynamic CSPs. In Fourth International Workshop
on Integration of AI and OR techniques in Constraint Programming for Combi-
natorial Optimisation Problems, pages 373–387, 2002.

[12] Hana Rudová and Keith Murray. University course timetabling with soft con-
straints. In Edmund Burke and Patrick De Causmaecker, editors, Practice
And Theory of Automated Timetabling, Selected Revised Papers, pages 310–328.
Springer-Verlag LNCS 2740, 2003.

[13] Hani El Sakkout and Mark Wallace. Probe backtrack search for minimal pertur-
bation in dynamic scheduling. CONSTRAINTS, 4(5):359–388, 2000.

[14] Gérard Verfaillie and Narendra Jussien. Dynamic constraint solving, 2003. A
tutorial including commented bibliography presented at CP 2003. See http://

www.emn.fr/x-info/jussien/CP03tutorial/.


