
Minimal Perturbation Problem – A Formal View*

Roman Barták1, Tomáš Müller1, Hana Rudová2

1 Charles University, Faculty of Mathematics and Physics
Malostranské nám. 2/25, Prague, Czech Republic

{bartak, muller}@ktiml.mff.cuni.cz

2 Masaryk University, Faculty of Informatics
Botanická 68a, Brno, Czech Republic

hanka@fi.muni.cz

Abstract. Formulation of many real-life problems evolves as the problem is
being solved. These changes are typically initiated by a user intervention or by
changes in the environment. In this paper, we propose a formal description of
so called minimal perturbation problem that allows an “automated”
modification of the (partial) solution when the problem formulation changes.
Our model is defined for constraint satisfaction problems with emphasis put on
finding a solution anytime even for over-constrained problems.

Keywords: constraint satisfaction, problem changes, modeling, soft constraints

Introduction

Many real-life problems can be naturally stated as constraint satisfaction problems
(CSP). To further spread up applicability of the constraint satisfaction technology in
real-life applications, it is necessary to cover dynamic aspects of the real world. This
is an important issue because quite often the problem formulation is not static but it
evolves in time. In fact, it evolves even during solving the problem. The changes in
the problem formulation can be initiated by the user who reacts to the (partial)
solution found so far by proposing some changes. Or the problem modification results
from the changes in the environment like broken machines, delayed flights etc.
Naturally, the problem solving process should continue as smoothly as possible after
any change. In particular, the solution of the altered problem should not differ too
much from the (partial) solution found for the initial problem. There are several
reasons to keep a new solution as close as possible to the initial solution. For example,
if the initial solution has already been published (like the assignment of gates to
flights) then it would not be nice to change it frequently from the obvious reasons.
Moreover, changes to the published solution may tend to push other changes and so
on. The paper studies this new type of the problem called a minimal perturbation

* Research is supported by the Grant Agency of the Czech Republic under the contract no.

201/99/0942 and by Purdue University.

problem (MPP), i.e., finding a solution of the new problem in such a way that this
new solution does not differ much from the solution of the initial problem.

Our work is motivated by a large scale timetabling problem at Purdue University,
USA. The primary focus of this work is to provide a support for making changes to
the generated timetable. Once timetables are published they require many changes
based on additional user input. These changes should be incorporated into the
problem solution with a minimal impact on any previously generated solution. We are
already able to generate the solution for the initial problem [10] and our current work
consists of solving the new problem after the user interaction. The basic requirement
is to keep the solution as close as possible to the published solution of the initial
problem, of course provided that the new solution is a solution of the altered problem.
Formally it means that the minimal number of variable assignments is changed after
the problem modification. Moreover, the problems to be solved are typically over-
constrained (it is not possible to satisfy all the constraints) so the proposed formalism
should be able to handle soft constraints.

The solver for the initial problem is based on the limited assignment number
(LAN) search algorithm [12]. This algorithm tries to assign a maximal number of
variables in such a way that the resulting problem is still consistent. The algorithm
does not guarantee finding a complete solution but it provides a good partial solution
in a limited time. Moreover, the algorithm provides a solution even for over-
constrained problems (and it is not necessary to specify explicitly that the problem is
over-constrained). We intend to extend this (primary) search algorithm in the
direction towards MPP using hybridization with other (secondary) search algorithm.

The paper is organized as follows. We first give more details about the lecture
timetabling problem that makes the main motivation of our research. The main part of
the paper is dedicated to a general formalization of the minimal perturbation problem.
We also describe an existing approach to the minimal perturbation problem and we
compare it with our new formalism. The paper is concluded with preliminary ideas of
the solving algorithm for MPP.

Motivation: A Course Timetabling Problem

The primary intent behind our work on minimal perturbation problems lies in the need
to solve such a problem in the context of a real timetabling application, in particular a
timetabling solver for Purdue University (USA). Purdue University timetabling
problem, that we should solve, consists of timetabling approximately 750 classes into
41 large lecture rooms with capacities up to 474 students. The classes are taught
several times a week resulting in about 1,600 meetings to be timetabled. The space
covered by all meetings fills approximately 85% of the total available space. Special
meeting patterns defined for each class restrict possible time and location placement,
e.g., all meetings of the same class must be taught at the same classroom and hour,
valid combinations of days are given, etc. Classroom allocation must respect
instructional requirements and preferences of faculty. All instructors may have
specific time requirements and preferences for each class. A major objective is to
minimize the number of potential student course conflicts for each of almost 29,000

students – student course selections are utilized to construct a timetable that attempts
to maximize the number of satisfied course requests. However, the main goal is to
timetable all classes since there are too many hard constraints.

The construction of the solution for this problem was described in [10]. The main
ideas behind the problem solver are as follows. Each meeting of a class is described
using two domain variables: a time variable (starting time of the meeting in a week)
and a classroom variable. The hard constraints ensure that two meetings will not be
taught in the same classroom at once. The constraints also remove values prohibited
by meeting patterns and by the requirements of instructors and faculties. Preferential
requirements on time and classroom placement together with the student course
conflicts are expressed using soft constraints. The cost of a soft constraint ensuring
that two classes with common students will not overlap is equal to the number of
common students. The preferences of instructors and faculties are expressed using
soft unary constraints; the preference of a certain value is expressed as a cost of the
constraint demanding a particular value to be chosen.

Labeling is done via a new limited assignment number search (LAN) algorithm
[12]. LAN Search is an incomplete iterative search algorithm where the standard
backtracking is limited to an incomplete search of the linear complexity. The aim is to
generate a partial solution with the maximal number of assigned variables. The
algorithm runs in iterations where each iteration step explores some sub-tree of the
search tree. The linear complexity is achieved by considering a limit on the number of
assignments for each variable tried during the iteration step. The result of each
iteration step is a partial solution that is used as a guide in the next iterations. Special
value and variable ordering heuristics have been proposed for this purpose.

It may still happen that the set of hard constraints is over-constrained. The user
input can be used to resolve this problem by relaxing some constraints. Then the LAN
search algorithm can continue in the subsequent iterations with the problem definition
changed. This approach is similar to the problem considered in this paper – we have a
partial solution and we want to construct a new solution under the redefinition of the
problem. However, the approach of LAN search does not minimize the number of
changes in subsequent solutions but it maximizes the number of labeled variables. A
solver for MPP should do both tasks.

The solution of the timetabling problem was implemented in SICStus Prolog
CLP(FD) library [3] with the help of our soft constraints solver [11]. The initial
implementation started with built-in backtracking of SICStus Prolog. However, the
experiments with standard backtracking did not lead to a solution after 10 hours of
run time (too many failed computations were repeated exploring the parts of the
search tree with no solution). LAN search was able to substantially improve on the
initial partial solution. Starting from 33 classes, only one class remained unassigned
after eight iterations of LAN search. Assignment of this class was successfully
completed with the help of the user.

The solution generated by the LAN Search algorithm introduces the initial
solution. Once timetables are published they require many changes based on
additional input. These changes should be incorporated into the problem solution with
a minimal impact on any previously generated solution. Note, that it is not possible to
limit the changes in the problem definition. Faculties and instructors may come with
completely new classes to be scheduled and the requirements towards the original

classes may change substantially. Also some requirements or classes can be canceled
which can help to find a more acceptable solution. On the other hand, the new
requirements usually make the problem harder since we are constrained in the number
of allowed changes with respect to the original solution. The original problem, its
solution, and the set of desired changes introduce the input for the minimal
perturbation problem we are going to solve.

LAN search algorithm introduces the very first step in the direction towards
solving the minimal perturbation problem. The partial solution generated in each
iteration step is derived from the former solution. As our experiments showed, the
distance of these solutions is mostly acceptable when a small number of changes is
done in the problem formulation. However, the distance significantly enlarges if the
number of desired changes increases. Other experiments also showed that the more
informed ordering heuristics may improve the quality of the generated solution
substantially. Thus LAN search algorithm seems to be a good base for solving of
minimal perturbation problem.

A Formal Model

In this section, we present a new formal model of the minimal perturbation problem in
the context of constraint satisfaction. This model is applicable to over-constrained
problems as well as to problems where finding a complete solution is hard. Recall that
the idea of MPP is to define a solution of the altered problem in such a way that this
solution is as close as possible to the (partial) solution of the original problem. We
first survey the standard definitions of CSP and we introduce a new notion of (locally)
maximal consistent assignment. We argue here that (locally) maximal consistent
assignment is a good candidate for solution of CSP as it is equivalent to the solution
of standard CSP and, moreover, it defines a reasonable solution for over-constrained
problems. In the second part, we formally define a minimal perturbation problem and
a solution of this problem.

Preliminaries

A constraint satisfaction problem (CSP) is a triple Θ=(V,D,C), where

• V = {v1,v2,…,vn} is a finite set of variables,
• D = {D1,D2,…,Dn} is a set of domains (i.e., Di is a set of possible values

for the variable vi),
• C = {c1,c2,…,cm} is a finite set of constraints restricting the values that the

variables can simultaneously take (a constraint is a subset of the Cartesian
product of the domains of the constrained variables).

A solution to the constraint satisfaction problem Θ is a complete assignment of the
variables from V that satisfies all the constraints. The values for the variables are
chosen from respective domains. Formally, an assignment is a set of pairs

variable/value such that a given variable appears at most once there. A complete
assignment for V contains a value for every variable from V.

Example 1 (CSP):
Let V = {a,b,c} be a set of variables with domains D = {Da={1,2}, Db={1,2,3},
Dc={2,3}} and C = {a≠c, a<b, b≠c} be a set of constraints. Then the following
two complete assignments of the variables are solutions of CSP Θ = (V,D,C):

• α1 = {a/1, b/2, c/3},
• α2 = {a/1, b/3, c/2}.

Various consistency techniques were proposed to deduce whether there exists or does
not exist a solution of CSP by removing inconsistent values; for details see [1]. For
example, arc consistency removes values from the variables’ domains that cannot
satisfy a constraint over this variable (see Example 2). Thanks to their local character,
the consistency techniques are fast (time complexity is polynomial) but they are not
complete, i.e. they cannot guarantee a global consistency (existence of solution).
Still, they can prune the search space by removing many inconsistencies.

Example 2 (arc consistency):
For the CSP from Example 1, arc consistency can deduce the following domain
reduction D = {Da={1}, Db={2,3}, Dc={2,3}} by removing values that do not
(locally) satisfy the constraints. Thus the problem is arc consistent.

For many problems it is hard or even impossible to find a complete assignment of
variables that satisfy all the constraints. For example, for over-constrained problems
[2], there does not exist any complete assignment satisfying all the constraints.
Therefore other definitions of problem solution like Partial Constraint Satisfaction
were introduced [6]. We introduce here a new notion of maximal consistent
assignment that is motivated by the university timetabling problem but we believe
that it has a more general usage. The basic idea behind is to assign as many as
possible variables while still keeping the rest of the problem “consistent”. It means
that the user may relax some constraints in the problem (typically some of the
constraints among the non-assigned variables that cause conflicts) so that after this
change the assignment can be extended to other variables.

Example 3 (over-constrained problem):
Let V = {a,b,c} be a set of variables with domains D = {Da={1,2}, Db={1,2},
Dc={1,2}} and C = {a≠c, a≠b, b≠c} be a set of constraints. Then CSP Θ = (V,D,C)
is over-constrained as there is no complete assignment satisfying all the
constraints.

Formally, let Θ be a CSP and C be a consistency technique (for example arc
consistency). We say that the constraint satisfaction problem is consistent if the
consistency technique deduces no conflict (e.g., for arc consistency, the conflict is
indicated by emptying domain of some variable). We denote C(Θ) the result of the
consistency test which could be either true, if the problem Θ is C consistent, or false
otherwise. Let Θ be a CSP and σ be a (partial) assignment of variables, then we
denote Θσ application of the assignment σ to the problem Θ, i.e., the domains of the
variables in σ are reduced to a singleton value defined by the assignment. Finally, we

say that a partial assignment σ is consistent with respect to some consistency
technique C iff C(Θσ). Note that a complete consistent assignment is a solution of the
problem.

Example 4 (partial consistent assignment):
Assume the following CSP:

Θ = ({a,b,c}, {Da={1,2}, Db={1,2}, Dc={1,2,3}}, {a≠c, a≠b, b≠c}).
Then σ = {a/1,b/2} is a partial (arc) consistent assignment because

Θσ = ({a,b,c}, {Da={1}, Db={2}, Dc={1,2,3}}, {a≠c, a≠b, b≠c})
is (arc) consistent (domains after reduction are {Da={1}, Db={2}, Dc={3}}).

As we already mentioned, for some problems there does not exist any complete
consistent assignment; these problems are called over-constrained. In such a case, we
propose to look for the maximal consistent assignment. We say that the consistent
assignment is maximal for given CSP if there is no other consistent assignment with a
larger number of assigned variables. We can also define a weaker version, so called
locally maximal consistent assignment. Locally maximal consistent assignment is a
consistent assignment that cannot be extended to another variable(s). Notice the
difference between the above two notions. The maximal consistent assignment is
defined using the cardinality of the assignment (the number of assigned variables) so
it has a global meaning while the locally maximal consistent assignment is defined
using a subset relation, i.e., it is not possible to assign any additional variable without
getting inconsistency. It is pretty easy (fast) to extend any consistent assignment to a
locally maximal consistent assignment. In fact, every branch of the search tree defines
such a locally maximal consistent assignment. Visibly, the maximal consistent
assignment is the largest (using cardinality) locally maximal consistent assignment.

Example 5 (maximal consistent assignments):
Let V = {a,b,c,d,e} be a set of variables with domains D = {Da={1,2}, Db={1,2,3},
Dc={2,3}, Dd={2,3}, De={2,3}} and C = {a≠b, b≠c, c≠d, c≠e, d≠e} be a set of
constraints. Assume that we use arc consistency as the technique for checking
consistency of CSP Θ = (V,D,C). Then:

• σ = {a/1} is a locally maximal consistent assignment for Θ which is not a
maximal consistent assignment (|σ|=1),

• γ = {a/2, b/1} is a maximal consistent assignment for Θ (|γ|=2).

If the constraint satisfaction problem has a solution then any maximal consistent
assignment is the solution. Thus, looking for a maximal consistent assignment is a
general way of solving CSPs because it covers both standard CSPs as well as over-
constrained problems. Moreover, it is not necessary to know in advance whether the
problem is over-constrained or not. Still, for some problems it may be hard to find a
maximal consistent assignment. In such a case, we propose to return the largest
locally maximal consistent assignment that can be found using given resources (e.g.,
time). In some sense, we are solving an optimization problem where the task is to find
out the largest locally maximal consistent assignment. This approach has a strong
real-life motivation, for example for timetabling and scheduling problems [8,10] it
means that the system allocates as many activities as possible in given time (and no
more activity can be allocated without a change of the current allocation). Typically,

the solving algorithms based on the above idea select some sub-space of the solution
space and for this sub-space they find a maximal consistent assignment which is a
locally maximal consistent assignment in the original solution space. For example, the
LAN Search algorithm [12] restricts the number of assignments tried per variable.

A Minimal Perturbation Problem

Now we can formally define a minimal perturbation problem (MPP) as a quadruple
Π = (Θ, Θ’, F, α), where:

• Θ, Θ’ are two CSPs,
• F is a mapping of the variables from Θ to Θ’ (see below for details), and
• α is a (locally) maximal consistent assignment for Θ called initial

assignment.

The function F defines how the problem Θ is changed in terms of the variables. It is
(almost) one-to-one mapping of the variables from Θ to the variables from Θ’. For
some variables v from Θ, the function F might not be defined which means that the
variable v is removed from the problem. However, if the function F is defined then it
is unique (it is a one-to-one mapping), i.e., v≠u & !F(v) & !F(u) ⇒ F(v)≠F(u). Also,
for some variables v’ from Θ’, the origin might not be defined (i.e., there is no
variable v such that F(v) = v’), which means that the variable v’ is added to the
problem. Notice also that the constraints and domains can be changed arbitrarily when
going from Θ to Θ’. We do not need to capture such changes using the mapping
functions like F because we concern primarily about the variable assignments.

Let σ be a (partial) assignment for Θ and γ be a (partial) assignment for Θ’. Then
we define WΠ(σ,γ) as a set of variables v from Θ such that the assignment of v in σ is
different from F(v) in γ, i.e., WΠ(σ,γ) = {v∈Θ | v/h∈σ & F(v)/h’∈γ & h≠h’}1. We call
WΠ(σ,γ) a distance set for σ and γ in Π.

A solution to the minimal perturbation problem Π = (Θ, Θ’, F, α) is a (locally)
maximal consistent assignment β for Θ’ such that the size of the distance set WΠ(α,β)
is minimal. The idea behind the solution of MPP is apparent – the task is to find the
best possible assignment of the variables for the new problem in such a way that it
differs minimally from the existing variable assignment of the initial problem.

Let us summarize now the two criteria used when solving MPP: the first criterion
is maximizing the number of assigned variables, the second criterion is minimizing
the number of differences between the resultant solution and the previous (initial)
solution over the variables which are both in the previous and in the new CSP. So, the
candidates for the solution are ordered lexicographically (max, min).

Example 6 (minimal perturbation problem):
Let α={a/1,b/3} be an initial solution of a CSP Θ with variables V={a,b,c} and Θ’
be a new CSP with variables V’={b,c,d}, domains D’ = {Db={1,3}, Dc={1,2,3},
Dd={2,3}}, and constraints C’={b≠c, c≠d, d≠b}. Assume that there is a mapping

1 For simplicity reasons we write v∈Θ which actually means v∈V, where Θ = (V,D,C).

F:{b→b, c→c} of variables from Θ to Θ’. Then the problem Θ’ has the following
solutions (maximal consistent assignments):

• β1 = {b/1,c/2,d/3} (WΠ(α,β1) = {b}),
• β2 = {b/1,c/3,d/2} (WΠ(α,β2) = {b}),
• β3 = {b/3,c/1,d/2} (WΠ(α,β3) = {}),

but only the solution β3 is the solution of MPP Π = (Θ, Θ’, F, α).

Note finally that we can adapt the ideas for solving CSPs presented in the previous
section to solving MPPs. In particular, we can restrict the solution space and then we
can look for the maximal consistent assignment within this sub-space. Typically, the
restriction of the solution space will be driven by the minimal distance of included
(partial) assignments from the initial assignment in Π. We present some ideas of the
solving algorithm in the last but one section.

Related Works

The minimal perturbation problem (MPP) is not a new notion. This type of problems
appears frequently in real-life planning and scheduling applications where the task is
to “minimally reconfigure schedules in response to a changing environment” [5]. The
minimal perturbation problem was described formally by El Sakkout, Richards, and
Wallace in [4] as a 5-tuple Π = (Θ, α, Cadd, Cdel, δ) where:

− Θ is a CSP (i.e. a triple (V,D,C), where V is a set of variables, D are domains for
V, and C is a set of constraints);

− α is a solution to Θ (i.e., a complete assignment satisfying the constraints from C)
− Cadd, Cdel are constraint removal and addition sets;
− δ is a function that measures the distance between two complete assignments

(perturbation).

A complete assignment β is a solution to Π iff it is a solution to CSP (V, D, C*),
where C* = (C\ Cdel)∪ Cadd), and δ(α,β) is minimal.

Notice that the above formulation of MPP is for hard CSPs where all the
constraints must be satisfied by a complete assignment of variables. Moreover, it
allows addition and retraction of constraints only - the set of variables is not changing.

Our view of MPP differs from the above definition in several ways. First, we
formulate MPP for soft CSPs, i.e., the best incomplete assignments are compared.
Second, we allow more general changes in the problem formulation; in particular both
the set of constraints and the set of variables (together with domains) can be changed.
Last but not least, our definition of the function δ measuring the distance between the
assignments is more concrete in comparing differences in the assignments.

Preliminary Ideas of the MPP Solver

As we sketched above, the MPP solver may share some ideas behind the solvers
exploring locally maximal consistent assignments. In particular, the MPP solver may
look for the maximal consistent assignment in a sub-space of the solution space
defined by the distance of assignments from the initial assignment. LAN Search is an
example of the algorithm driven by such principles. Thus our first idea is to
extend/refine this algorithm in such a way that the algorithm is able to continue
solving the problem after its change. In particular, we intend to insert a secondary
algorithm that would propose assignments to the primarily backtracking-based search
algorithm (we call the values from this assignment recommended values). This
proposal follows the results from [9] where it has been shown theoretically that
backtracking-based search guided by information about a complete assignment has a
better average running time. Naturally, the secondary algorithm should propose an
assignment close to the initial assignment but respecting in some sense the new
problem (the new constraints). Thus we can say that the secondary algorithm defines
a value ordering heuristic for the primary algorithm.

We expect the secondary algorithm to run very fast and thus it can be called
several times by the primary algorithm (a dynamic value ordering heuristic). Still, the
secondary algorithm will not have a trivial (constant) complexity and thus the calls to
it should be restricted somehow. Our first intent is to call this algorithm before the
primary search algorithm starts and then every time a recommended value disappears
from the domain of any variable (such value might be removed by some look-ahead
propagation technique). In this second case, the secondary algorithm will propose a
new recommended value for the variables where the old recommended value is out of
the current domain and it will change the recommended values for other future (not-
yet assigned) variables accordingly.

To achieve fast execution of the secondary algorithm, we expect it to solve a
portion of the problem only. In particular, only some (easier) constraints from the
problem will be assumed by the secondary algorithm. One of the ideas is to use local
search techniques [13] for the secondary algorithm that can propose good assignments
fast. This technique has already been applied in [7] where local search was used in
each step of the construction of the partial assignment.

Requirements on the Secondary Algorithm

The secondary algorithm will propose an assignment of the variables that will guide
the primary algorithm (like a value ordering heuristic). Naturally, this recommended
assignment will be probably inconsistent otherwise we have a solution and no
primarily algorithm is required. Still the assignment recommended by the secondary
algorithm should be “partially” consistent and it should be as close as possible to the
initial assignment. To achieve the partial consistency, we simply relax the constraint
satisfaction problem by removing some constraints. Then the secondary algorithm
should return the maximal consistent assignment for this relaxed problem.

Formally, let Π = (Θ, Θ’, F, α) be a minimal perturbation problem, such that
Θ’ = (V,D,C), and β be a partial consistent assignment of variables for Θ’ found so

far. Then we construct a new MPP Π’ = (Θ, Θ’’, F, α) such that Θ’’ = (V,D,S(C))β,
where S(C)⊆C. Basically we remove “some” constraints from the new problem using
a selection function S and we apply the partial assignment β to this relaxed problem.
Let K = |WΠ(α,β)|, i.e., K describes the current number of differences between the
initial assignment and the new partial assignment. We require the secondary
algorithm to find a maximal consistent assignment γ for the problem Θ’’ such that
|WΠ’(α,γ)|≤K+L for some given natural number L. It means that the secondary
algorithm can add L additional differences to the recommended assignment. In
particular if L=0 then the secondary algorithm solves the MPP Π’. However, γ is not
necessarily a solution of MPP Π; it just extends β in the most promising way.

Conclusions

The paper presents a new view of the minimal perturbation problem motivated by a
real-life application of university course timetabling. This new framework supports
incomplete assignments as a problem solution which is useful to model over-
constrained problems or hard-to-solve problems. Moreover, this new formulation
allows looser changes of the problem formulation like addition/retraction of
constraints and variables as well as changes in the variables’ domains. We have also
sketched the preliminary ideas of the solving algorithm for MPP. Next work will
concentrate on the design and implementation of the solving algorithm and on testing
the algorithm in a real-life timetabling application.

References

[1] Roman Barták. Theory and Practice of Constraint Propagation. In Jaroslaw Figwer (ed.):
Proceedings of 3rd Workshop on Constraint Programming for Decision and Control.
CPDC2001. Gliwice, 2001, 7-14.

[2] Roman Barták. Modelling Soft Constraints: A Survey. Neural Network World, Vol. 12,
Number 5, 2002, 421-431.

[3] Mats Carlsson, Greger Ottosson, and Bjorn Carlson. An open-ended finite domain
constraint solver. In Programming Languages: Implementations, Logics, and
Programming. Springer-Verlag LNCS 1292, 1997.

[4] Hani El Sakkout, Thomas Richards, and Mark Wallace. Minimal Perturbation in
Dynamic Scheduling. In Henri Prade (ed.): 13th European Conference on Artificial
Intelligence, ECAI-98. John Wiley & Sons, 1998.

[5] Hani El Sakkout and Mark Wallace. Probe Backtrack Search for Minimal Perturbation in
Dynamic Scheduling. Constraints 4(5). Kluwer Academic Publishers, 2000, 359-388.

[6] Eugene C. Freuder and Richard J. Wallace. Partial Constraint Satisfaction. Artificial
Intelligence, 58, 1992, 21-70.

[7] Narendra Jussien and Olivier Lhomme. Local search with constraint propagation and
conflict-based heuristics. Artificial Intelligence, 139(1), 2002, 21-45.

[8] Tomáš Müller and Roman Barták. Interactive Timetabling: Concepts, Techniques, and
Practical Results. In Edmund Burke, Patrick De Causmaecker (eds.): Proceedings of the
4th International Conference on the Practice and Theory of Automated Timetabling.
PATAT2002. Gent, 2002, 58-72.

[9] Paul Walton Purdom, Jr. and G. Neil Haven. Probe order backtracking. SIAM Journal on
Computing 26(2), 1997, 456-483.

[10] Hana Rudová and Keith Murray. University Course Timetabling with Soft Constraints. In
Edmund Burke, Patrick De Causmaecker (eds.): Practice And Theory of Automated
Timetabling IV. Springer-Verlag LNCS 2740, 2003.

[11] Hana Rudová. Soft CLP(FD). In Susan Haller and Ingrid Russell (eds.): Proceedings of
the 16th International Florida Artificial Intelligence Symposium, FLAIRS-03. AAAI
Press, 2003, 202-206.

[12] Kamil Vermirovský, Hana Rudová. Limited Assignment Number Search Algorithm. In
Maria Bielikova (ed.): SOFSEM 2002 Student Research Forum, 2002, 53-58.

[13] Stefan Voß. Meta-heuristics: State of the art. In Alexander Nareyek (ed.): Local search
for planning and scheduling: revisited papers. Springer-Verlag LNAI 2148, 2001, 1-23.

