
CPDC’2002 
 

   

 
 
 
 
 
Some Novel Approaches to Lecture Timetabling 
 
 
Tomáš Müller 
 
Charles University, Faculty of Mathematics and Physics, Malostranské náměstí 2/25, 
118 00 Praha 1, Czech Republic, e-mail: muller@kti.mff.cuni.cz 
 
Abstract: Lecture timetabling consists of lectures, which have to be assigned to 
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1 INTRODUCTION 

Timetabling can be seen as a form of scheduling 
where the task is to allocate activities to available 
slots in resources respecting some constraints. 
Typically, an activity is described by its duration 
and by resources required to process the activity 
(conjunction and disjunction of resources can be 
used). There are also precedence constraints 
between the activities stating which activity must 
proceed before another activity and resource 
constraints stating when and how many activities 
can be processed by a given resource. In addition to 
the above hard constraints, that cannot be violated, 
there are many preferences - soft constraints - 
describing the users' wishes about the timetable. 
Constraint programming (CP) is a natural tool for 
describing and solving such problems and there are 
many timetabling systems based on CP [1, 3, 7, 16]. 

In this paper we define a lecture timetabling 
problem and we describe an interactive algorithm to 
solve this problem. This forward-search algorithm 
combines both local search and backtracking 
approaches. Current work on the presented 
algorithm and several improvements are also 
discussed in the following sections of this paper.  

The problem motivation, basic algorithm, and 
some preliminary results are also described in paper 
[12]. The interactive behaviour, as the major feature 
of the below presented algorithm, is also discussed 
there. The extensions of the problem and the 
solution algorithm to solve a real-life lecture 
timetabling problem at the Faculty of Mathematics 
and Physics at Charles University with outlined 

achieved results are presented in paper [13]. The 
generalization of this algorithm for solving various 
finite constraint satisfaction problems is presented 
in paper [14]. 

2 MODEL 

We propose a generic model for weekly periodical, 
lecture timetabling problems consisting of a set of 
resources (teachers, classes, rooms etc.), a set of 
activities (lectures, courses, seminars etc.), and a set 
of dependencies between the activities. Time is 
divided into the time slots with the same duration. 
Every slot may have a constraint assigned, either a 
hard or a soft one: a hard constraint indicates that 
the slot is forbidden for any activity, a soft 
constraint indicates that the slot is not preferred. 
We call these constraints “time preferences”. Every 
activity and every resource may have assigned a set 
of time preferences, which indicate forbidden and 
not preferred time slots. 

An activity is identified by its name. Every 
activity is described by its duration (expressed as a 
number of time slots), by time preferences, and by 
a set of resources. This set of resources determines 
which resources are required by the activity. To 
model alternative as well as required resources, we 
divide the set of resources into several subsets – 
resource groups. Each group is either conjunctive 
or disjunctive: the conjunctive group of resources 
means that the activity needs all the resources from 
the group, the disjunctive group means that the 
activity needs exactly one of the resources (we can 
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select among several alternatives). For example, a 
lecture will take place in one of the possible 
classrooms and it will be taught for all of the 
selected classes. Note that we do not need to model 
the conjunctive groups explicitly because we can 
use a set of disjunctive groups containing exactly 
one resource instead (the set of required resources 
can be described in a conjunctive normal form). 
However, usage of both conjunctive and disjunctive 
groups simplifies modelling for the users. 

A resource is also identified by its name and it 
is fully described by time preferences. There is a 
hard restriction that only one activity can use the 
resource at the same time. The resource represents a 
teacher, a class, a classroom, or another special 
resource in the timetabling problem. 

Finally, we need a mechanism for defining and 
handling direct dependencies between activities. It 
seems sufficient to use binary dependencies only 
that define a relationship between two activities. 
Currently, we use three temporal constraints: an 
activity finishes before another activity, an activity 
finishes exactly at the time when the other activity 
starts, and two activities run concurrently (e.g. they 
have the same start time). The scheduling engine 
provides an interface for introduction of other 
binary dependencies. For example, in [13] a 
dependence is discussed which avoids teaching two 
non-alternative lectures of the same seminar in the 
same day. 

The solution of the problem defined by the 
above model is a timetable, where every scheduled 
activity has assigned its start time and a set of 
reserved resources, which are needed for its 
execution (the activity is allocated to respective 
slots of the reserved resources). This timetable must 
satisfy all the hard constraints, namely: 

• every scheduled activity has all the 
required resources reserved, i.e., all the 
resources from the conjunctive groups and 
one resource from each disjunctive group 
of resources, 

• two scheduled activities cannot use the 
same resource at the same time, 

• no activity is scheduled into a time slot 
where the activity or some of its reserved 
resources has a hard constraint in the time 
preferences, 

• all dependencies between the scheduled 
activities must be satisfied. 

Furthermore, we want to minimise the number 
of violated soft constraints in the time preferences 
of resources and activities. We do not formally 

express this objective function; these preferences 
are used as a guide during search for the solution. 

Last but not least, due to the requested 
interactive feature (discussed in [12, 13]), we need 
to present some solution to the user at each time. 
Therefore, we will work with partial solutions 
where some of the activities are not scheduled yet. 
Still, these partial solutions must satisfy the above 
constraints. Note that using partial solutions also 
allows us to provide a reasonable result even in 
case of over-constrained problems. 

3 ALGORITHM 

To satisfy the needs of interactive timetabling we 
designed an algorithm for solving the above 
described timetabling problem, which combines 
two basic constraint programming approaches: the 
local search and the backtrack-based search. 
Namely, we required working with feasible 
(perhaps incomplete) timetables, where some 
activities are not scheduled yet and we demanded 
the timetable not to differ much from step to step 
(from one feasible solution to another) during the 
search. 

We propose an interactive scheduling algorithm 
that works in iterations. This algorithm uses two 
basic data structures: a set of activities that are not 
scheduled and a partial feasible timetable. At each 
iteration step, the algorithm tries to improve the 
current partial timetable towards a complete one. 
The scheduling starts with an empty partial 
schedule (which is a feasible schedule), i.e. all the 
activities are in the list of non-scheduled activities. 
Then it goes repeatedly from one partial feasible 
solution to another feasible solution until all the 
activities are scheduled or the maximum number of 
iterations is reached.  

Let’s have a look now at what is going on in the 
iteration step. First, the algorithm selects an un-
scheduled activity and computes the locations 
where the activity can be allocated (locations with 
the hard constraints are not assumed). Every 
location is described by a start time (the number of 
the first slot for the activity) and by a set of 
required resources. Then every location is evaluated 
using a heuristic function over the current partial 
schedule. Finally, the activity is placed to the best 
location that may cause some conflicts with already 
scheduled activities. Such conflicting activities are 
removed from the schedule and they are put back to 
the list of non-scheduled activities. (see Figure 1)
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Figure 1. An iteration step of the timetabling algorithm

The above algorithm schema is parameterised 
by two functions: the activity selection and the 
location selection. The activity selection problem is 
equivalent to what is known as a variable selection 
criterion in constraint programming. There are 
several general guidelines how to select a variable. 
In the local search, the variable participating in the 
largest number of violations is usually selected first. 
In backtracking based algorithms, the first-fail 
principle is often used, i.e., the variable whose 
instantiation is the most complicated is selected 
first. This could be the variable involved in the 
largest set of constraints (a static criterion) or the 
variable with the smallest domain (a dynamic 
criterion) etc. [4, 8, 11]. In the current 
implementation a weighted sum of several criteria 
(such as in how many dependencies does the 
activity participate or in how many places can the 
activity be placed) is used and the activity with the 
minimal heuristic value is selected. Using such 
formula gives us more flexibility when tuning the 
system for a particular problem. 

After selecting an activity we need to find a 
location where to place it. This problem is usually 
called the value selection in constraint 
programming. Typically, the most useful advice is 
to select the best-fit place [4, 8, 11]. So, we are 
looking for a place, which is the most preferred for 
the activity and also where the activity causes less 
trouble. It means that we need to find a place with 
minimal potential future conflicts with other 
activities. Note that we are not using constraint 
propagation explicitly in our algorithm, the power 
of constraint propagation is hidden in the location 
selection (it roughly corresponds to a forward 
checking method). Similarly to the activity 
selection criterion, a weighted sum of several 
criteria is used and a location with the minimal 
value is selected. For example, the number of 
violated soft constraints or the number of conflict 
activities is counted for each location. 

Moreover, because of removing activities from 
the partial schedule, we need a mechanism to 
prevent cycles. In the current implementation of the 
scheduling engine we use a technique based on a 
tabu list [4, 10, 17]. Tabu list is a FIFO (first in first 
out) structure of pairs (variable, value) with a fixed 
length. When a value V is assigned to the variable 
X, a new pair (X,V) is added to the end of the tabu 
list and the first pair is removed from the tabu list. 
Now, we can avoid a repeated selection of the same 
value by applying a tabu rule which says: if the pair 
(X,V) is already in the tabu list then do not select 
the value V for X again (until the pair disappears 
from the tabu list). The tabu rule prevents short 
cycles (a cycle length corresponds to the length of 
the tabu list) and it can be broken only via so called 
aspiration criterion. If the aspiration criterion is 
satisfied for a pair (X,V) then V can be assigned to 
X even if the pair (X,V) is in the tabu list. 

4 IMPROVEMENTS 

Although the above described algorithm is pretty 
successful both in randomly generated and in the 
real-life timetable problems (as shown in [12, 13]), 
it also gives us a lot of space for further 
improvements. These improvements can be 
oriented both towards acceleration of the search and 
towards problem enlargements and tuning the sense 
of adding new constraints or requirements. Several 
algorithm improvements are described in the 
following sections. 

4.1 Current Improvements 

Some improvements are already discussed in papers 
[12, 13]. The first improvement is included in the 
activity selection criterion. It is possible to select 
the worst activity among all non-scheduled 
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activities but due to the complexity of computing 
the heuristic value, this could be rather expensive. 
Therefore we proposed to select a subset of non-
scheduled activities randomly (we use a probability 
of selection 0.2) and then to choose the worst 
activity from this subset. The results will not be 
much worse and we can select the activity 
approximately five times faster (see Figure 2 and 
3). 

The second improvement is the randomisation 
of the location selection method (e.g. to remove 
cycling). For example, it is possible to select five 
best locations for an activity and then choose one 
other randomly. Or, it is possible to select a set of 
locations such that the heuristic value for the worst 
location in this group is maximally twice as large as 
the heuristic value of the best location. Again, the 
location is selected randomly from this group. This 
second rule inhibits randomness if there is a single 
very good location. 

On the following figures some results achieved 
with the described improvements are presented. 
These results were obtained using randomly 
generated problems with the size of 20 classes, 20 
rooms, and 20 teachers and 10 slots per day (5 
days). See [12] or visit our benchmark page [15] for 
more details about the generated timetables. 

Figure 2. Comparison of the number of iterations and 
time (measured in milliseconds) needed to solve the 
generated timetable for three basic variable selection 
criteria (× randomly selected activity, ◊ the worst activity 
among 20% randomly selected activities, • the worst 
activity among all activities). 

Figure 3. Comparison of the number of scheduled 
activities (as percent of all activities) for three basic 
variable selection criteria (× randomly selected activity, ◊ 
the worst activity among 20% randomly selected 
activities, • the worst activity among all activities). 

We compared the three basic activity selection 
criteria, namely random selection of the activity, 
selection of the worst activity among 20% 
randomly selected non-scheduled activities, and 
selection of the worst activity among all non-
scheduled activities. Feasible problems with 
different number of activities were used (the 
number of activities is measured in percent of the 
timetable space). 

It is not surprising that the selection of the 
activity from all non-scheduled activities leads to 
the smallest number of iterations and to schedules 
with the largest number of scheduled activities. 
However, this method also brings some overhead so 
it needs more time to find a schedule. Random 
selection of the activity is very fast but it requires 
higher number of iterations to find a schedule and 
in cases with more activities the number of 
scheduled activities decreases. Our experiments 
confirm that the idea of combination of random 
selection with activity selection heuristic could 
bring interesting results. The number of iterations 
and successfully scheduled activities is comparable 
to the method where all non-scheduled activities are 
explored. However, the overall time is lower 
because we are choosing from about 20% of 
randomly selected activities only. 

 

4.2 Graph Colouring Approach 

As it is presented in [5], we can use the graph 
colouring approach for splitting up the activities 
into different groups. Each activity is represented as 
a different vertex with an edge between vertices 
where two respective activities conflict in some 
way. Colouring the graph is the process of 
allocating different colours to each vertex so that no 
two adjacent (conflicting) vertices have the same 
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colour. Each colour corresponds to one period in 
the timetable. Therefore, ignoring the constraints 
imposed by the availability of rooms and other 
resources and duration of the activities, the smallest 
timetable length possible is the same as the 
minimum number of colours needed to colour the 
graph (the chromatic number). The graph colouring 
problem have been proved to be NP-complete. 

In the above presented timetable algorithm, the 
graph colouring engine can be used for splitting up 
the activities into several independent groups or for 
finding the maximal set of independent activities 
(or almost maximal set when a heuristic colouring 
algorithm is used). A similar approach, where the 
search for almost maximal independent set of the 
activities is used with combination of the knapsack 
filling problem, is presented in [5], used in the 
exam scheduling at the University of Nottingham. 

We propose to use the search of an almost 
maximal independent set of activities in the activity 
selection criterion. Two different activities can be 
located in the same independent set if there is no 
direct dependence between them and they do not 
share a common resource for their execution (even 
if the resource is in the disjunctive group for one of 
the activities). Typically, many lectures in the 
lecture timetabling problem have no restriction for 
the room where it should be taught, and therefore 
these lectures can be seen as conflict ones; for that 
reason, we propose not to use the room resource 
constraints for specifying the conflicts between the 
activities. Two different lectures will be in the 
conflict (cannot be in the same independent set) if 
there is a direct dependence (e.g. one should 
precede the other) between them and they are not 
taught by the same teacher or for the same class 
(e.g. the intersection of the sets of classes, for 
which are the lectures taught, has to be empty). 
Two activities cannot use the same special resource 
(e.g. overhead projector) either. 

Figure 4. Timetabling with the graph colouring approach 

On the above figure, one possible use of graph 
colouring approach in the lecture timetabling 
algorithm is shown. At first, the almost maximal 
independent set of activities from all unscheduled 
activities is found. These activities are scheduled 
via the above presented timetabling algorithm, the 
removed activities are placed back to the set of the 
unscheduled activities. The activity selection 
criterion can be the same as before, but it will 
operate only over the independent set of activities 

(not over all unscheduled activities). The location 
criterion should be slightly modified to take into 
account also the independency of the given 
activities (e.g. it should try to schedule them in the 
same time).  

Unfortunately, we cannot give any overview 
now, whether this improvement helps the 
timetabling engine or not, or how exactly should be 
the timetabling algorithm or its heuristics altered in 
order to profit from the independency of the given 
activities. This feature is not yet fully implemented 
into our timetabling program. The graph colouring 
algorithm can use the similar idea for colouring 
vertices as the timetabling algorithm – when some 
vertex is coloured, colours from all adjacent 
conflicting vertices are removed. Similar heuristics 
for selecting a vertex to be coloured or the vertex’s 
new colour can be also introduced there. 

 

4.3 Evolutionary Approach 

Genetic algorithms are powerful general purpose 
optimisation tools which model the principles of 
evolution [2, 6, 7, 9]. They are often capable of 
finding globally optimal solution even in the most 
complex search spaces. They operate on a 
population of solutions which are selected 
according to their quality and then used as the basis 
for a new generation of solutions found by 
combining (crossover) and/or altering (mutating) 
current individuals. Traditionally, the search 
mechanism has been domain independent, that 
means the crossover and mutation operators have 
no knowledge of what a good solution would be. 
However, it seems that better results can be 
achieved by using domain dependent operators [6]. 
In the following paragraphs, we will discuss how 
the presented algorithm can be used as a part of the 
genetic timetabling algorithm. 

In our case, a solution is a feasible timetable, 
which consists of a partial sound timetable and a set 
of unscheduled activities. A genetic algorithm starts 
by generating a set (population) of timetables 
randomly. Next, every randomly generated 
timetable is made consistent by removing the 
conflict activities. Starting timetables can be also 
generated from free timetables (where no activity is 
scheduled) by performing at most N iterations with 
random activity selection criterion (where N is a 
suitably chosen constant). These starting timetables 
are evaluated according to some kind of criteria. 
For example, a number of unscheduled activities or 
a number of violated constraints can be used in the 
evaluation. On the basis of this evaluation the 
population members (timetables) are chosen as 
parents for the next generation of timetables. 

Graph 
Colouring 

Engine 

Timetabling 
Engine 

Almost Maximal 
Independent Set of 

Activities 

Input Activities 

Removed Activities 
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Figure 5. The genetic algorithm 

On Figure 5, an iteration of the presented 
genetic algorithm is shown. Every iteration starts 
from the parent population and produces next 
population of feasible timetables, which is the 
parent population for the next iteration. This 
process stops when a solution with all activities 
scheduled is produced (and when this solution 
meets all additional requirements, for example 
when the solution satisfies at least 95% of all the 
soft constraints). 

Until the next population has the required 
number of members, two members from the parent 
population are selected. These parent timetables are 
combined via the crossover operator into a new 
timetable, which is mutated by the mutation 
operator and then added into the next population 
(which is empty at the beginning of the iteration). 

All timetables in the parent population are 
evaluated and the selection of two parent timetables 
is provided via some individual selection function. 
Good timetables (e.g. with less unscheduled 
activities) should be more likely to be chosen than 
the bad ones. 

A major reason, whether the genetic algorithm 
is successful or not, lies in the crossover operator. 
This operator should combine the good properties 
from both parents and produce a timetable, which 

should intimately correspond to both parents and 
which should be better than the parent timetables. 
We propose an operator that works in two phases: 
First, it takes all scheduled activities from both 
parent timetables and puts them into the new 
timetable to the same locations where they were in 
one of the parent timetables. When an activity was 
scheduled only in a single parent timetable, it goes 
exactly to the same place. Otherwise, when an 
activity was scheduled in both parent timetables, 
these two locations are evaluated (we can use the 
same evaluation function as in the above presented 
location selection criterion) and the activity is 
placed to the more preferred location. Activities, 
which are unscheduled in both parent timetables, 
will be unscheduled again in the produced 
timetable. In the second step, when all scheduled 
activities are placed in the new timetable, the 
timetable is made feasible by removing conflicting 
activities. A heuristic criterion can also be used 
there, which can for example order the conflict 
activities (not all the activities, which are in 
conflict, have to be removed). 

Next, when a new timetable is produced, the 
mutation operator is performed on it. The sense of 
this operator here is to improve the timetable by 
scheduling some of the unscheduled activities. As 
the mutation operator, we propose to use a limited 
number of iterations (e.g. at most N iterations) of 
the previously described algorithm. 

We believe that the presented algorithm will be 
successful, but unfortunately there are no results, 
which can be presented right now – the algorithm is 
not fully implemented and balanced right now (via 
setting the population size, number of iterations in 
the mutation operations and parameters of all used 
heuristics etc.). The use of the feasible timetables 
seems to be a great advantage of this algorithm. 

In the sense of interactivity, we need to present 
only one solution during the search. We also need 
to be able to continue scheduling after the user 
stops the timetable process and alters the timetable 
somehow. In this case, we can always present the 
best timetable from a population during the search. 
So, when the algorithm should start from some 
partial solution it can first make the solution 
feasible (by removing conflicting activities). Next, 
it can produce some starting population from one 
timetable by applying randomised mutation 
operator (e.g. random activity selection) several 
times on the altered timetable and then it can start 
searching (a genetic algorithm process) from this 
population. Unfortunately, the differences of two 
following timetables can be huge, which can be a 
bit confusing for the users. 

5 CONCLUSION 

We presented a promising algorithm for solving 
timetabling problems, which combines principles of 

 Selection 

Crossover 
Operator 

Mutation 
Operator 

Next Population 

Parent Population 
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the local search with other techniques for solving 
constraint satisfaction problems. Although the basic 
motivation was to design a generic algorithm with 
interactive features for solving school timetabling 
problems, the proposed principles can be applied to 
other constraint satisfaction problems especially 
when interactive behaviour is required. The 
algorithm and its current implementation can be 
easily extended to cover additional hard and soft 
constraints. Several potential improvements and 
extensions were presented as well. 

Currently, we are working on further empirical 
studies of this algorithm with a particular emphasis 
on studies how the weights influence efficiency. 
Further research is oriented both theoretically, to 
formalise the techniques and to put them in a wider 
context of constraint programming, and practically, 
to implement the above described two major 
improvements of the algorithm – the almost 
maximal independent set of activities and the 
genetic algorithm. 
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