
CPDC’2002

Some Novel Approaches to Lecture Timetabling

Tomáš Müller

Charles University, Faculty of Mathematics and Physics, Malostranské náměstí 2/25,
118 00 Praha 1, Czech Republic, e-mail: muller@kti.mff.cuni.cz

Abstract: Lecture timetabling consists of lectures, which have to be assigned to
appropriate time periods, and resources – rooms, classes, and teachers respecting various
constraints like precedence and room capacity. In this paper we outline a constraint model
and a solution algorithm for interactive timetabling. Current and further improvements of
the described timetabling algorithm are also presented in this paper.

Keywords: lecture timetabling, university timetabling, weekly-course timetabling, local
search, forward search, graph colouring, genetic algorithm

1 INTRODUCTION

Timetabling can be seen as a form of scheduling
where the task is to allocate activities to available
slots in resources respecting some constraints.
Typically, an activity is described by its duration
and by resources required to process the activity
(conjunction and disjunction of resources can be
used). There are also precedence constraints
between the activities stating which activity must
proceed before another activity and resource
constraints stating when and how many activities
can be processed by a given resource. In addition to
the above hard constraints, that cannot be violated,
there are many preferences - soft constraints -
describing the users' wishes about the timetable.
Constraint programming (CP) is a natural tool for
describing and solving such problems and there are
many timetabling systems based on CP [1, 3, 7, 16].

In this paper we define a lecture timetabling
problem and we describe an interactive algorithm to
solve this problem. This forward-search algorithm
combines both local search and backtracking
approaches. Current work on the presented
algorithm and several improvements are also
discussed in the following sections of this paper.

The problem motivation, basic algorithm, and
some preliminary results are also described in paper
[12]. The interactive behaviour, as the major feature
of the below presented algorithm, is also discussed
there. The extensions of the problem and the
solution algorithm to solve a real-life lecture
timetabling problem at the Faculty of Mathematics
and Physics at Charles University with outlined

achieved results are presented in paper [13]. The
generalization of this algorithm for solving various
finite constraint satisfaction problems is presented
in paper [14].

2 MODEL

We propose a generic model for weekly periodical,
lecture timetabling problems consisting of a set of
resources (teachers, classes, rooms etc.), a set of
activities (lectures, courses, seminars etc.), and a set
of dependencies between the activities. Time is
divided into the time slots with the same duration.
Every slot may have a constraint assigned, either a
hard or a soft one: a hard constraint indicates that
the slot is forbidden for any activity, a soft
constraint indicates that the slot is not preferred.
We call these constraints “time preferences”. Every
activity and every resource may have assigned a set
of time preferences, which indicate forbidden and
not preferred time slots.

An activity is identified by its name. Every
activity is described by its duration (expressed as a
number of time slots), by time preferences, and by
a set of resources. This set of resources determines
which resources are required by the activity. To
model alternative as well as required resources, we
divide the set of resources into several subsets –
resource groups. Each group is either conjunctive
or disjunctive: the conjunctive group of resources
means that the activity needs all the resources from
the group, the disjunctive group means that the
activity needs exactly one of the resources (we can

CPDC’2002

select among several alternatives). For example, a
lecture will take place in one of the possible
classrooms and it will be taught for all of the
selected classes. Note that we do not need to model
the conjunctive groups explicitly because we can
use a set of disjunctive groups containing exactly
one resource instead (the set of required resources
can be described in a conjunctive normal form).
However, usage of both conjunctive and disjunctive
groups simplifies modelling for the users.

A resource is also identified by its name and it
is fully described by time preferences. There is a
hard restriction that only one activity can use the
resource at the same time. The resource represents a
teacher, a class, a classroom, or another special
resource in the timetabling problem.

Finally, we need a mechanism for defining and
handling direct dependencies between activities. It
seems sufficient to use binary dependencies only
that define a relationship between two activities.
Currently, we use three temporal constraints: an
activity finishes before another activity, an activity
finishes exactly at the time when the other activity
starts, and two activities run concurrently (e.g. they
have the same start time). The scheduling engine
provides an interface for introduction of other
binary dependencies. For example, in [13] a
dependence is discussed which avoids teaching two
non-alternative lectures of the same seminar in the
same day.

The solution of the problem defined by the
above model is a timetable, where every scheduled
activity has assigned its start time and a set of
reserved resources, which are needed for its
execution (the activity is allocated to respective
slots of the reserved resources). This timetable must
satisfy all the hard constraints, namely:

• every scheduled activity has all the
required resources reserved, i.e., all the
resources from the conjunctive groups and
one resource from each disjunctive group
of resources,

• two scheduled activities cannot use the
same resource at the same time,

• no activity is scheduled into a time slot
where the activity or some of its reserved
resources has a hard constraint in the time
preferences,

• all dependencies between the scheduled
activities must be satisfied.

Furthermore, we want to minimise the number
of violated soft constraints in the time preferences
of resources and activities. We do not formally

express this objective function; these preferences
are used as a guide during search for the solution.

Last but not least, due to the requested
interactive feature (discussed in [12, 13]), we need
to present some solution to the user at each time.
Therefore, we will work with partial solutions
where some of the activities are not scheduled yet.
Still, these partial solutions must satisfy the above
constraints. Note that using partial solutions also
allows us to provide a reasonable result even in
case of over-constrained problems.

3 ALGORITHM

To satisfy the needs of interactive timetabling we
designed an algorithm for solving the above
described timetabling problem, which combines
two basic constraint programming approaches: the
local search and the backtrack-based search.
Namely, we required working with feasible
(perhaps incomplete) timetables, where some
activities are not scheduled yet and we demanded
the timetable not to differ much from step to step
(from one feasible solution to another) during the
search.

We propose an interactive scheduling algorithm
that works in iterations. This algorithm uses two
basic data structures: a set of activities that are not
scheduled and a partial feasible timetable. At each
iteration step, the algorithm tries to improve the
current partial timetable towards a complete one.
The scheduling starts with an empty partial
schedule (which is a feasible schedule), i.e. all the
activities are in the list of non-scheduled activities.
Then it goes repeatedly from one partial feasible
solution to another feasible solution until all the
activities are scheduled or the maximum number of
iterations is reached.

Let’s have a look now at what is going on in the
iteration step. First, the algorithm selects an un-
scheduled activity and computes the locations
where the activity can be allocated (locations with
the hard constraints are not assumed). Every
location is described by a start time (the number of
the first slot for the activity) and by a set of
required resources. Then every location is evaluated
using a heuristic function over the current partial
schedule. Finally, the activity is placed to the best
location that may cause some conflicts with already
scheduled activities. Such conflicting activities are
removed from the schedule and they are put back to
the list of non-scheduled activities. (see Figure 1)

CPDC’2002

Figure 1. An iteration step of the timetabling algorithm

The above algorithm schema is parameterised
by two functions: the activity selection and the
location selection. The activity selection problem is
equivalent to what is known as a variable selection
criterion in constraint programming. There are
several general guidelines how to select a variable.
In the local search, the variable participating in the
largest number of violations is usually selected first.
In backtracking based algorithms, the first-fail
principle is often used, i.e., the variable whose
instantiation is the most complicated is selected
first. This could be the variable involved in the
largest set of constraints (a static criterion) or the
variable with the smallest domain (a dynamic
criterion) etc. [4, 8, 11]. In the current
implementation a weighted sum of several criteria
(such as in how many dependencies does the
activity participate or in how many places can the
activity be placed) is used and the activity with the
minimal heuristic value is selected. Using such
formula gives us more flexibility when tuning the
system for a particular problem.

After selecting an activity we need to find a
location where to place it. This problem is usually
called the value selection in constraint
programming. Typically, the most useful advice is
to select the best-fit place [4, 8, 11]. So, we are
looking for a place, which is the most preferred for
the activity and also where the activity causes less
trouble. It means that we need to find a place with
minimal potential future conflicts with other
activities. Note that we are not using constraint
propagation explicitly in our algorithm, the power
of constraint propagation is hidden in the location
selection (it roughly corresponds to a forward
checking method). Similarly to the activity
selection criterion, a weighted sum of several
criteria is used and a location with the minimal
value is selected. For example, the number of
violated soft constraints or the number of conflict
activities is counted for each location.

Moreover, because of removing activities from
the partial schedule, we need a mechanism to
prevent cycles. In the current implementation of the
scheduling engine we use a technique based on a
tabu list [4, 10, 17]. Tabu list is a FIFO (first in first
out) structure of pairs (variable, value) with a fixed
length. When a value V is assigned to the variable
X, a new pair (X,V) is added to the end of the tabu
list and the first pair is removed from the tabu list.
Now, we can avoid a repeated selection of the same
value by applying a tabu rule which says: if the pair
(X,V) is already in the tabu list then do not select
the value V for X again (until the pair disappears
from the tabu list). The tabu rule prevents short
cycles (a cycle length corresponds to the length of
the tabu list) and it can be broken only via so called
aspiration criterion. If the aspiration criterion is
satisfied for a pair (X,V) then V can be assigned to
X even if the pair (X,V) is in the tabu list.

4 IMPROVEMENTS

Although the above described algorithm is pretty
successful both in randomly generated and in the
real-life timetable problems (as shown in [12, 13]),
it also gives us a lot of space for further
improvements. These improvements can be
oriented both towards acceleration of the search and
towards problem enlargements and tuning the sense
of adding new constraints or requirements. Several
algorithm improvements are described in the
following sections.

4.1 Current Improvements

Some improvements are already discussed in papers
[12, 13]. The first improvement is included in the
activity selection criterion. It is possible to select
the worst activity among all non-scheduled

CPDC’2002

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

50 55 60 65 70 75 80 85 90

Fullness of the timetable [%]

Ti
m

e
[m

s]

0

250

500

750

1000

1250

1500

1750

2000

50 55 60 65 70 75 80 85 90

Fullness of the timetable [%]

Ite
ra

tio
ns

60

65

70

75

80

85

90

95

100

70 75 80 85 90 95

Fullness of the timetable [%]

Sc
he

du
le

d
ac

tiv
iti

es
 [%

]

activities but due to the complexity of computing
the heuristic value, this could be rather expensive.
Therefore we proposed to select a subset of non-
scheduled activities randomly (we use a probability
of selection 0.2) and then to choose the worst
activity from this subset. The results will not be
much worse and we can select the activity
approximately five times faster (see Figure 2 and
3).

The second improvement is the randomisation
of the location selection method (e.g. to remove
cycling). For example, it is possible to select five
best locations for an activity and then choose one
other randomly. Or, it is possible to select a set of
locations such that the heuristic value for the worst
location in this group is maximally twice as large as
the heuristic value of the best location. Again, the
location is selected randomly from this group. This
second rule inhibits randomness if there is a single
very good location.

On the following figures some results achieved
with the described improvements are presented.
These results were obtained using randomly
generated problems with the size of 20 classes, 20
rooms, and 20 teachers and 10 slots per day (5
days). See [12] or visit our benchmark page [15] for
more details about the generated timetables.

Figure 2. Comparison of the number of iterations and
time (measured in milliseconds) needed to solve the
generated timetable for three basic variable selection
criteria (× randomly selected activity, ◊ the worst activity
among 20% randomly selected activities, • the worst
activity among all activities).

Figure 3. Comparison of the number of scheduled
activities (as percent of all activities) for three basic
variable selection criteria (× randomly selected activity, ◊
the worst activity among 20% randomly selected
activities, • the worst activity among all activities).

We compared the three basic activity selection
criteria, namely random selection of the activity,
selection of the worst activity among 20%
randomly selected non-scheduled activities, and
selection of the worst activity among all non-
scheduled activities. Feasible problems with
different number of activities were used (the
number of activities is measured in percent of the
timetable space).

It is not surprising that the selection of the
activity from all non-scheduled activities leads to
the smallest number of iterations and to schedules
with the largest number of scheduled activities.
However, this method also brings some overhead so
it needs more time to find a schedule. Random
selection of the activity is very fast but it requires
higher number of iterations to find a schedule and
in cases with more activities the number of
scheduled activities decreases. Our experiments
confirm that the idea of combination of random
selection with activity selection heuristic could
bring interesting results. The number of iterations
and successfully scheduled activities is comparable
to the method where all non-scheduled activities are
explored. However, the overall time is lower
because we are choosing from about 20% of
randomly selected activities only.

4.2 Graph Colouring Approach

As it is presented in [5], we can use the graph
colouring approach for splitting up the activities
into different groups. Each activity is represented as
a different vertex with an edge between vertices
where two respective activities conflict in some
way. Colouring the graph is the process of
allocating different colours to each vertex so that no
two adjacent (conflicting) vertices have the same

CPDC’2002

colour. Each colour corresponds to one period in
the timetable. Therefore, ignoring the constraints
imposed by the availability of rooms and other
resources and duration of the activities, the smallest
timetable length possible is the same as the
minimum number of colours needed to colour the
graph (the chromatic number). The graph colouring
problem have been proved to be NP-complete.

In the above presented timetable algorithm, the
graph colouring engine can be used for splitting up
the activities into several independent groups or for
finding the maximal set of independent activities
(or almost maximal set when a heuristic colouring
algorithm is used). A similar approach, where the
search for almost maximal independent set of the
activities is used with combination of the knapsack
filling problem, is presented in [5], used in the
exam scheduling at the University of Nottingham.

We propose to use the search of an almost
maximal independent set of activities in the activity
selection criterion. Two different activities can be
located in the same independent set if there is no
direct dependence between them and they do not
share a common resource for their execution (even
if the resource is in the disjunctive group for one of
the activities). Typically, many lectures in the
lecture timetabling problem have no restriction for
the room where it should be taught, and therefore
these lectures can be seen as conflict ones; for that
reason, we propose not to use the room resource
constraints for specifying the conflicts between the
activities. Two different lectures will be in the
conflict (cannot be in the same independent set) if
there is a direct dependence (e.g. one should
precede the other) between them and they are not
taught by the same teacher or for the same class
(e.g. the intersection of the sets of classes, for
which are the lectures taught, has to be empty).
Two activities cannot use the same special resource
(e.g. overhead projector) either.

Figure 4. Timetabling with the graph colouring approach

On the above figure, one possible use of graph
colouring approach in the lecture timetabling
algorithm is shown. At first, the almost maximal
independent set of activities from all unscheduled
activities is found. These activities are scheduled
via the above presented timetabling algorithm, the
removed activities are placed back to the set of the
unscheduled activities. The activity selection
criterion can be the same as before, but it will
operate only over the independent set of activities

(not over all unscheduled activities). The location
criterion should be slightly modified to take into
account also the independency of the given
activities (e.g. it should try to schedule them in the
same time).

Unfortunately, we cannot give any overview
now, whether this improvement helps the
timetabling engine or not, or how exactly should be
the timetabling algorithm or its heuristics altered in
order to profit from the independency of the given
activities. This feature is not yet fully implemented
into our timetabling program. The graph colouring
algorithm can use the similar idea for colouring
vertices as the timetabling algorithm – when some
vertex is coloured, colours from all adjacent
conflicting vertices are removed. Similar heuristics
for selecting a vertex to be coloured or the vertex’s
new colour can be also introduced there.

4.3 Evolutionary Approach

Genetic algorithms are powerful general purpose
optimisation tools which model the principles of
evolution [2, 6, 7, 9]. They are often capable of
finding globally optimal solution even in the most
complex search spaces. They operate on a
population of solutions which are selected
according to their quality and then used as the basis
for a new generation of solutions found by
combining (crossover) and/or altering (mutating)
current individuals. Traditionally, the search
mechanism has been domain independent, that
means the crossover and mutation operators have
no knowledge of what a good solution would be.
However, it seems that better results can be
achieved by using domain dependent operators [6].
In the following paragraphs, we will discuss how
the presented algorithm can be used as a part of the
genetic timetabling algorithm.

In our case, a solution is a feasible timetable,
which consists of a partial sound timetable and a set
of unscheduled activities. A genetic algorithm starts
by generating a set (population) of timetables
randomly. Next, every randomly generated
timetable is made consistent by removing the
conflict activities. Starting timetables can be also
generated from free timetables (where no activity is
scheduled) by performing at most N iterations with
random activity selection criterion (where N is a
suitably chosen constant). These starting timetables
are evaluated according to some kind of criteria.
For example, a number of unscheduled activities or
a number of violated constraints can be used in the
evaluation. On the basis of this evaluation the
population members (timetables) are chosen as
parents for the next generation of timetables.

Graph
Colouring

Engine

Timetabling
Engine

Almost Maximal
Independent Set of

Activities

Input Activities

Removed Activities

CPDC’2002

Figure 5. The genetic algorithm

On Figure 5, an iteration of the presented
genetic algorithm is shown. Every iteration starts
from the parent population and produces next
population of feasible timetables, which is the
parent population for the next iteration. This
process stops when a solution with all activities
scheduled is produced (and when this solution
meets all additional requirements, for example
when the solution satisfies at least 95% of all the
soft constraints).

Until the next population has the required
number of members, two members from the parent
population are selected. These parent timetables are
combined via the crossover operator into a new
timetable, which is mutated by the mutation
operator and then added into the next population
(which is empty at the beginning of the iteration).

All timetables in the parent population are
evaluated and the selection of two parent timetables
is provided via some individual selection function.
Good timetables (e.g. with less unscheduled
activities) should be more likely to be chosen than
the bad ones.

A major reason, whether the genetic algorithm
is successful or not, lies in the crossover operator.
This operator should combine the good properties
from both parents and produce a timetable, which

should intimately correspond to both parents and
which should be better than the parent timetables.
We propose an operator that works in two phases:
First, it takes all scheduled activities from both
parent timetables and puts them into the new
timetable to the same locations where they were in
one of the parent timetables. When an activity was
scheduled only in a single parent timetable, it goes
exactly to the same place. Otherwise, when an
activity was scheduled in both parent timetables,
these two locations are evaluated (we can use the
same evaluation function as in the above presented
location selection criterion) and the activity is
placed to the more preferred location. Activities,
which are unscheduled in both parent timetables,
will be unscheduled again in the produced
timetable. In the second step, when all scheduled
activities are placed in the new timetable, the
timetable is made feasible by removing conflicting
activities. A heuristic criterion can also be used
there, which can for example order the conflict
activities (not all the activities, which are in
conflict, have to be removed).

Next, when a new timetable is produced, the
mutation operator is performed on it. The sense of
this operator here is to improve the timetable by
scheduling some of the unscheduled activities. As
the mutation operator, we propose to use a limited
number of iterations (e.g. at most N iterations) of
the previously described algorithm.

We believe that the presented algorithm will be
successful, but unfortunately there are no results,
which can be presented right now – the algorithm is
not fully implemented and balanced right now (via
setting the population size, number of iterations in
the mutation operations and parameters of all used
heuristics etc.). The use of the feasible timetables
seems to be a great advantage of this algorithm.

In the sense of interactivity, we need to present
only one solution during the search. We also need
to be able to continue scheduling after the user
stops the timetable process and alters the timetable
somehow. In this case, we can always present the
best timetable from a population during the search.
So, when the algorithm should start from some
partial solution it can first make the solution
feasible (by removing conflicting activities). Next,
it can produce some starting population from one
timetable by applying randomised mutation
operator (e.g. random activity selection) several
times on the altered timetable and then it can start
searching (a genetic algorithm process) from this
population. Unfortunately, the differences of two
following timetables can be huge, which can be a
bit confusing for the users.

5 CONCLUSION

We presented a promising algorithm for solving
timetabling problems, which combines principles of

 Selection

Crossover
Operator

Mutation
Operator

Next Population

Parent Population

CPDC’2002

the local search with other techniques for solving
constraint satisfaction problems. Although the basic
motivation was to design a generic algorithm with
interactive features for solving school timetabling
problems, the proposed principles can be applied to
other constraint satisfaction problems especially
when interactive behaviour is required. The
algorithm and its current implementation can be
easily extended to cover additional hard and soft
constraints. Several potential improvements and
extensions were presented as well.

Currently, we are working on further empirical
studies of this algorithm with a particular emphasis
on studies how the weights influence efficiency.
Further research is oriented both theoretically, to
formalise the techniques and to put them in a wider
context of constraint programming, and practically,
to implement the above described two major
improvements of the algorithm – the almost
maximal independent set of activities and the
genetic algorithm.

6 REFERENCES

1. S. Abdennadher and M. Marte. University
timetabling using constraint handling rules. Journal
of Applied Artificial Intelligence, Special Issue on
Constraint Handling Rules, 1999.

2. D. Abramson and J. Abela. A parallel genetic
algorithm for solving the school timetabling
problem, Technical report, Division of Information
Technology, C.S.I.R.O., 1991.

3. R. Barták. Dynamic Constraint Models for Planning
and Scheduling Problems. In New Trends in
Constraints, LNAI 1865, pp. 237-255, Springer,
2000.

4. R. Barták. On-line Guide to Constraint
Programming,
http://kti.mff.cuni.cz/~bartak/constraints, 1998.

5. E. K. Burke, D. G. Elliman, R. F. Weare. A
University Timetabling System Based on Graph
Colouring and Constraint Manipulation, Journal of
Research on Computing in Education, 1993.

6. E.K. Burke, D. G. Elliman, R. F. Weare. A Genetic
Algorithm Based University Timetabling System.
East-West Conference on Computer Technologies in
Education, Crimea, Ukraine pp35-40, 1994.

7. J. P. Caldeira and C. R. Agostinho. School
Timetabling Using Genetic Search, Practice and
Theory of Automated Timetabling, Toronto, 1997

8. D. Clements, J. Crawford, D. Joslin, G. Nemhauser,
M. Puttlitz, M. Savelsbergh. Heuristic optimization:
A hybrid AI/OR approach. In Workshop on
Industrial Constraint-Directed Scheduling, 1997.

9. W. Erben and J. Keppler. A Genetic Algorithm
solving a Weekly Course-Timetabling Problem. In
Proceedings of ICPTAT’95, pp. 21-32, Napier
University, Edinburgh, 1995.

10. P. Galinier and J.K. Hao. Tabu search for maximal
constraint satisfaction problems. In Proceedings of
CP'97, G. Smolka ed., LNCS 1330, pp. 196-208,
Schloss Hagenberg, Austria, Springer, 1997.

11. Z. Michalewicz, D. B. Fogel. How to Solve It:
Modern Heuristics. Springer, 2000.

12. T. Müller, R. Barták. Interactive Timetabling. In
Proceedings of the ERCIM workshop on constraints,
Prague, 2001.

13. T. Müller and R. Barták. Interactive Timetabling:
Concepts, Techniques, and Practical Results. In
Proceedings of the PATAT conference, Gent, 2002.

14. T. Müller. Interactive Heuristic Search Algorithm.
In Proceedings of the Doctoral Programme of the
CP-2002 conference, Ithaca, 2002

15. T. Müller. Interactive Timetabling – Benchmarks,
http://kti.mff.cuni.cz/~muller/ttbench, 2002

16. A. Schaerf. A survey of automated timetabling.
Technical Report CS-R9567, Centrum voor
Wiskunde en Informatica (CWI), Amsterdam, The
Netherlands, 1996.

17. A. Schaerf. Tabu search techniques for large high-
school timetabling problems. In Proceedings of the
Fourteenth National Conference on Artificial
Intelligence, pp. 363-368, Portland, Oregon,
USA,1996.

