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1. Introduction

Constraint programming is a natural tool for ddsiog as well as solving
a lot of problems from various areas. Its major aadage is its capability of
precise declarative description of a problem usgigtions between variables. It
is based on a strong theoretical basis and it lndes practical applications in areas
of evaluation, modelling, and optimisation.

Timetabling is one of the typical examples of coeist programming
application. The task is to allocate activitiegime and space respecting various
constraints and to satisfy as nearly as possildeteof desirable objectives. A
typical constraint is the request that activitidsioki are using the same resource
(e.g., a room, a machine, an operator, ...) can netlap in time or that a
resource is of a certain capacity, restricting Bay many activities can use it at
the same time. In addition, there are usually i@iat between activities and
constraints restricting what resources an actsfityuld or can use.

There are a lot of timetabling problems from vasi@reas, for example,
there is course, examination, transport, workfospgrt timetabling etc. In this
thesis we will concentrate on course timetabling.

There are two major objectives of this Ph.D. theais would like to find,
describe and experimentally verify a constraintdoasalgorithm which is
applicable to course timetabling problems as well ta other constraint
satisfaction and optimisation problems. Moreoveithvsuch an algorithm, we
would like to tackle a real-life large scale tim@iag problem. The whole Ph.D.
work was motivated by this possibility to create agorithm which is able to
solve a given real-life problem and which can paea solution fully acceptable
by the users.

The thesis is organized as follows. In the follogvichapter, we give a
brief overview of the constraint satisfaction peybland of various approaches to
solving this problem. We also extend the traditloshefinition of the constraint
satisfaction problem into a minimal perturbatiomlgem that is more suited for
dynamic problems. In such problems, changes inpitedblem definition are
occurring after a solution to the initial formulati has been reached. The minimal
perturbation problem incorporates these changesgakith the initial solution, as
a new problem whose solution must be as close sslpe to the initial solution.

Chapter three briefly describes various timetablprgblems. It also
defines the class timetabling problem at Purduevérsity. It is a real-life large
scale problem that includes features of over-camstd as well as optimisation
problems. The goal is to timetable more than 8@@les to a limited number of



lecture rooms (about 50) and to satisfy as manypassible individual course
requests of almost 30,000 students.

In the fourth chapter, the iterative forward seaatgorithm is presented to
solve both initial and minimal perturbation probkenThis algorithm is close to
local search methods; however, it maintains paffiggsible assignments as
opposed to the complete conflicting assignmentsadhberistic of local search.
Similar to local search, it processes local changebe assignment. This allows
us to generate a complete solution and to improeeytiality of the assignment at
the same time.

Chapter five contains several extensions of theatitee forward search
algorithm. The most important, conflict-based stats, is proposed to improve
the quality of the final solution. Conflicts durinbe search are memorized and
their potential repetition is minimized. In thisagter, we also present how this
conflict-based statistics can be used within a gdncal search algorithm.
Another presented extension allows the iterativevéod search algorithm to
dynamically maintain arc consistency during therceaFinally, we also present
how to transform this algorithm into the dynamickiaacking algorithm.

In chapter six, various experiments with initial all as minimal
perturbation problems are presented. The compaissorade on a random binary
constraint satisfaction problem, on a random plasgnproblem and on the
timetabling problem of Purdue University from chapthree. It surveys various
settings of the algorithm, with and without its exsions. There is also a
comparison of iterative forward search algorithmihwsome other local search
algorithms and of the conflict-based statisticsdua&thin two basic local search
algorithms. Comparison of solutions given by thesalidbed algorithm with a
hand-made solution of class timetabling problerP@tdue University is also an
important part of this chapter.

Finally, chapter seven concludes the thesis andteha&ight contains the
bibliography. There are also four appendixes: ApipenA describes the
implementation of the iterative forward search &l in Java. Appendix B
contains an example how to solve random binarytcaing satisfaction problems
with the presented algorithm. Appendix C presemistteer timetabling problem
we solved with the presented iterative forward clealgorithm. Appendix D lists
the content of the attached CD-ROM.



2. Overview

Many real-life industrial and engineering problesan be modelled as
finite constraint satisfaction problems (CSP) [T3a®\ CSP consists of a set of
variables associated with finite domains and aofetonstraints restricting the
values that the variables can simultaneously tika.complete solution of a CSP,
a value is assigned to every variable from thealdeis domain, in such a way
that every constraint is satisfied.

Most algorithms for solving CSPs search systemiaticdirough the
possible assignments of values to variables. Sigiriloms are guaranteed to
find a solution, if one exists, or to prove thag foroblem has no solution. They
start from an empty solution (no variable is ass@rthat is extended towards a
complete solution satisfying all the constraintstie problem. Backtracking
occurs when a dead-end is reached. The biggesiepnaif such backtrack-based
algorithms is that they typically make early migtakn the search, i.e., a wrong
early assignment can cause a whole subtree togdered with no success. There
are several ways of improving standard chronolddgieaktracking. Look-back
enhancements exploit information about the seartiiciwhas already been
performed, e.g., backmarking or backjumping [DFQ@2Jok-ahead enhancements
exploit information about the remaining search spaa filtering techniques (e.g.,
via maintaining arc consistency described in [BRBRQ1]) or variable and value
ordering heuristics [MFOO]. The last group of entements is trying to refine the
search tree during the search process, e.g., dgriznktracking [Gin93].

Local search algorithms [MF0Q] (e.g., min-confli®tJP92] or tabu search
[GH97]) perform an incomplete exploration of theusd space by repairing an
infeasible complete assignment. Unlike systemaarch algorithms, local search
algorithms move from one complete (but infeasibdssignment to another,
typically in a non-deterministic manner, guided Hguristics. In general, local
search algorithms are incomplete, they do not gueeafinding a complete
solution satisfying all the constraints. Howevéede algorithms may be far more
efficient (wrt. response time) than systematic omedinding a solution. For
optimisation problems, they can reach a far befialtity in a given time frame.

There are several other approaches which try tobemmlocal search
methods together with backtracking based algoritHhes example, the decision
repair algorithm presented in [JLO2] repeatedlyergls a set of assignments
(called decisions) satisfying all the constraifikg in backtrack-based algorithms.
It performs a local search to repair these assigtsnghen a dead-end is reached
(i.e., these decisions become inconsistent). Aftese decisions are repaired, the
construction of the solution continues to the raedd-end. A similar approach is
used in the algorithm presented in [Sch97] as well.



2.1. Constraint Satisfaction Problem

Definition 2.1 (CSP). A constraint satisfaction problem (CSP) is a
triple © = (V,D,C), where

o V={vy,Vy,...,Vn} is a finite set of variables,

* D = {Dvy,Dvy,....Dvy} is a set of domains (i.e., Dvs a set of
possible values for the variablg,v

» C ={cy,C,...,Cn} is a finite set of constraints restricting thdues
that the variables can simultaneously take.

Definition 2.2 (assignment)Let © be a CSP, an assignment of the
variables from V ig) O {v/a|v(0V& allDv} where [ v/a, w/b (I n
v =w = a =Dhb. An element \d of n means that variable v has
assigned value. An assignment is complete iff||= |V]| (i.e., all
variables are assigned).

Definition 2.3 (solution to CSP). A solution to the constrair
satisfaction problen® is a complete assignmemtof the variables
from V that satisfies all the constraints.

~—+

For many constraint satisfaction problems it isdhair even impossible to
find a solution in the above sense. For example of@r-constrained problems
[FW92], there does not exist any complete assignneatisfying all the
constraints. Therefore other definitions of probleofution like Partial Constraint
Satisfaction were introduced [FW92]. In papers [BOBBRBMRO04], we proposed
a new view of the problem solution based on a neton of maximal consistent
assignment. This approach is strongly motivatedth®y university timetabling
problem but we believe that it is generally apdliea The basic idea behind is to
assign as many variables as possible while stépkey the rest of the problem
“consistent”. It means that the user may later xedame constraints in the
problem (typically some of the constraints among ribbn-assigned variables that
cause conflicts) so that after this change thegassnt can be extended to other
variables.

Formally, we define consistency of a proble& using the given
consistency techniquias follows:

Definition 2.4 (consistency technique)Consistency (or filtering
techniquel is a function that for the given CSP = (V,D,C)
returns a new set of domains D’ = {Q;'v,,...,D’vy}, where Ui
D'v;O Dv; so that the property of the consistency technigue
holds true for the CSP®’ = (V,D’,C). If the property cannot b
achieved on the proble®, consistency technigugereturnsfail .t

D

1 There exist some consistency techniques that ddatlonto this scheme, for instance, path comsisy
[MH86] where inconsistent pairs of values are fdtk But, these techniques are not much used itigac
applications.



Definition 2.5 (consistency checkLonsistency check(®) is true if
and only if the consistency techniggeleduces no failure on the

CSPO, otherwise((©) is false

For instance, arc consistency (AC) technique remoxaues from variables’
domains that are inconsistent with constraints &fition 2.6).

Definition 2.6 (arc consistency)The pair of variables (¥;) is arc
consistent if and only if for every valx€IDv; of variable ywhich
satisfies the constraints ontkere is some valug1Dy; of variable
vj such that the assignmeat= {vi/x, vy} is permitted by the
constraint between and y.

Definition 2.7 (arc consistent problem)A given CSP O is arc
consistent if and only if every pair of variableg,\|) is arc
consistent.

We say that the constraint satisfaction problemcamsistent if the
consistency technique deduces no failure (e.g.aforconsistency, the failure is
indicated by emptying some domain).

Definition 2.8 (consistency)A given CSPO is consistent respecting
consistency techniquéif and only if the consistency che¢kd)
is true.

Let © be a CSP and be a (partial) assignment of variables, then we
denote®o application of the assignmeatto the problen®, i.e., the domains of
the variables i are reduced to a singleton value defined by tegasent.

Definition 2.9 (application of the assignmert to the problem©®).
©o = (V,D’,C) is application of the (partial) assigent o to the
problem® = (V,D,C) if and only if D’ ={D’v3,D'va,...,D'vp}
where

e [i (aODv; vi/aldo) = D'vi={a}

e [ (—| CAlDv; vi/aDo) = D’vi= Dy,

Definition 2.10 (consistent assignmentp partial assignment is
consistent respecting consistency techniqué and only if the
consistency check(©o) is true, where®ao is application of the
assignment to the problem®.

Note that a complete consistent assignment is w@igolof the problem.
Note also that backtracking-based solving techragygically extend a partial
consistent assignment towards a complete (congistesignment.

As we already mentioned, for some problems thermes dwt exist any
complete consistent assignment; these problemgalled over-constrained. In
such a case, we propose to look for the maximadistant assignment.



Definition 2.11 (maximal  consistent assignment). A  partial
assignment is maximal consistent assignment for a given G5P
if there is no consistent assignmeritwith a larger number of
assigned variables, i.eg;|p|o].

We can also define a weaker version, so calledon@ximal consistent
assignment.

Definition 2.12 (locally maximal consistent assignment)ocally
maximal consistent assignmemtis a consistent assignment that
cannot be extended to another variable(s). Thism#zat there i$
noo’ [ o that is consistent.

Notice the difference between the above two notioAse maximal
consistent assignment is defined using the caithnaf the assignment (the
number of assigned variables) so it has a globainmg while the locally
maximal consistent assignment is defined using kseturelation, i.e., it is not
possible to assign an additional variable withaettigg inconsistency. It is pretty
easy (fast) to extend any consistent assignmeat lteally maximal consistent
assignment. In fact, every branch of the sear@dedines such a locally maximal
consistent assignment. Apparently, the maximal isteys assignment is the
largest (using cardinality) locally maximal conerst assignment.

Example (maximal consistent assignments):

Let V = {a,b,c,d,e} be a set of variables with donsaD = {D,={1,2},
Dy={1,2,3}, D={2,3}, D¢={2,3}, D~{2,3}} and C = {a£b, b#c, &2d, cte, dte}
be a set of constraints. Assume that we use arsistency as the technique for
checking consistency of CS®= (V,D,C). Then:

« o0 = {a/l} is a locally maximal consistent assignmémt @ which is
not a maximal consistent assignmeat<]L),
« y={a/2, b/1} is a maximal consistent assignmemt@o (jy|=2).

If a constraint satisfaction problem has a soluttben any maximal
consistent assignment is the solution. Thus, lapkor a maximal consistent
assignment is a general way of solving CSPs becausavers both standard
CSPs as well as over-constrained problems. Mored@vsrnot necessary to know
in advance whether the problem is over-constragratbt. Still, it may be hard to
find a maximal consistent assignment for some @bl In such a case, we
propose to return the largest locally maximal cstesit assignment that can be
found using given resources (e.g., time). This epgn has a strong real-life
motivation, for example in timetabling and schedglproblems [MB02, RM03] it
means that the system allocates as many actiasigsossible in given time (and
no more activity can be allocated without a chanfehe current allocation).
Typically, the solving algorithms based on the abalea select some sub-space
of the solution space. For this sub-space, theyl fan maximal consistent



assignment which is a locally maximal consistergigasnent in the original
solution space. For example, the LAN search algorifVR02] restricts the
number of assignments tried per variable.

2.2. Minimal Perturbation Problem

Most existing solvers are designed for static potd. These problems can
be expressed, solved by appropriate means, ansbtigon applied without any
change to the problem statement. Many real-litdblgms [Koc02, VJ03, SWO0O0,
lan04], however, are subject to change. Additionplt requirements produce a
new problem derived from the original problem. Tymamics of such a problem
may require changes during the solution processeven after a solution is
generated. In many real situations, it is necesgasiter the solution process so
that the dynamic aspects of the problem definiimntaken into account.

Problem changes may result from changes to envieoteh variables,
such as broken machines, delayed flights, or athexpected events. Users may
also specify new properties based on the soluband so far. The goal is to find
an improved solution for the user. Naturally, greblem solving process should
continue as smoothly as possible after any chamgieel problem formulation. In
particular, the solution of the altered problemwdtaot differ significantly from
the solution found for the original problem.

There are several reasons to keep a new solutiolose as possible to the
existing solution. If the solution has already bepublished, such as the
assignment of gates to flights, frequent changesildv@onfuse passengers.
Moreover, changes to a published solution may rste¢s other changes if
initially satisfied wishes of users are violatedhis may create an avalanche
reaction.

Dynamic problems appear frequently in real-lifenplsmg and scheduling
applications where the task is to “minimally redgofe schedules in response to
a changing environment” [SWO00]. Dynamic changethacontext of timetabling
problems have started to be studied at [EGJO3J)eks®f interactive timetabling
which needs to handle dynamic aspects of the pmoblere discussed in
[CDJD04, PMMO04, MBO02]. A survey of existing apprbas to dynamic
scheduling can be found in [Koc02]. In an annotdtédadiography on dynamic
constraint solving [VJO03], it is notable that oribur papers were devoted to the
problem of minimal changes.

The minimal perturbation problem was described &ilynin [SW00] and
solved by a combination of linear and constrairdgpamming as a 5-tupld =

(@, a, Cags Cael, 6) where:

« OisaCSP (ie., atriple (V,D,C), where V is a skvariables, D are
domains for V, and C is a set of constraints);

« 0O is a solution to® (i.e., a complete assignment satisfying the
constraints from C)



+  Cada Cyerare constraint removal and addition sets;
« 0 is a function that measures the distance between domplete
assignments (perturbation).

A complete assignmerfitis a solution td1 iff it is a solution to CSP (V,
D, C), where C = (C\ Gie)J Cagd), andd(a,B) is minimal.

Notice that the above formulation of MPP is forh&SPs where all the
constraints must be satisfied by a complete assghiof variables. Moreover, it
allows addition and retraction of constraints osty the set of variables is not
changing.

Our view of MPP differs from the above definitiam several ways. First,
we formulate MPP for soft CSPs, i.e., the best nmglete assignments are
compared. Second, we allow more general changi® iproblem formulation; in
particular both the set of constraints and the afevariables (together with
domains) can be changed. Last but not least, ofinititen of the functiond
measuring distance between assignments is moreratendin comparing
differences in the assignments.

2.2.1. A Formal Model

In papers [BMR03, BMR04], we presented a new formaldel of the
minimal perturbation problem that is applicableotcer-constrained problems as
well as to problems where finding a complete soluis hard. Recall that the idea
of MPP is to define a solution of the altered pewblin such a way that this
solution is as close as possible to the (part@l)teon of the original problem.

Definition 2.13 (MPP). A minimal perturbation problem (MPP) |s
quadrupld1 = (©, @, F, a), where:

e O, © are two CSPs called amitial problem and achanged
problem

* Fis a mapping of the variables frato ©’, and

e ais a (locally) maximal consistent assignment@ocalledinitial
assignment

The function F defines how the proble® is changed in terms of
variables. It is (almost) one-to-one mapping of tregiables from® to the
variables from@’. For some variables v from®, the function F might not be
defined which means that the variable v is remdvexh the problem. However,
if the function F is defined then it is uniqueifita one-to-one mapping).



Definition 2.14 (mapping of variables between problems).is a
function of the variables fro® = (V,D,C) to® = (V’,D’,C’) so
that

e domain of Fdonm(F) O V

* range of Frng(F) O V'’

e [Ov,uddom(F) wu = F(v)}£F(u).

Also, for some variables v’ fror®’, the origin might not be defined (i.e.,
there is no variable v such that F(v) = V'), whicteans that the variable v’ is
added to the problem. Notice also that the comdg@nd domains can be changed
arbitrarily when going fron® to ©. We do not need to capture such changes
using the mapping functions like F because we aneerned primarily about the
variable assignments.

Definition 2.15 (distance set)Let o be a (partial) assignment for
© =(V,D,C) andy be a (partial) assignment f& = (V',D’,C’).
Then we define \W(o,y) as a set of variables v fro® such that
the assignment of v io is different from F(v) iry, i.e.,

Whn(oyy) ={vOV | vihlo & F(v)/h’Oy & h#h'}.
We call Wi(o,y) adistance sefor o andy in I and the elements
of the set are callegerturbations

Definition 2.16 (solution to MPP). A solution to the minima
perturbation problem1 = (©, ©, F,a) is a (locally) maxima
consistent assignmeftfor © such that the size of the distance set
Whn(a,B) is minimal.

The idea behind the solution of MPP is appareriie-task is to find the
best possible assignment of the variables for &éve problem in such a way that it
differs minimally from the existing variable assimgent of the initial problem.

Let us summarize now the two criteria used wherisglMPP: the first
criterion is maximizing the number of assigned ables, the second criterion is
minimizing the number of perturbations between tésultant solution and the
previous (initial) solution. These criteria are doned lexicographically to get an
objective function.

Example:

Let a={a/1,b/3} be the initial solution of a CSB® with variables
V={a,b,c} and © be a new CSP with variables V'={b,c,d}, domains B
{D,={1,3}, D~={1,2,3}, Dg={2,3}}, and constraints C'={lc, ¢£d, dzb}. Assume
that there is a mapping F:{bb, c-c} of variables from® to ©'. Then the
problem®’ has the following solutions (maximal consistessignments):

«  PBu={b/1,c/2,d/3} (Wh(at,Ba) = {b}),
« B2={b/1,c/3,d/2} (Wh(a,B) = {b}),
«  Bs={b/3,c/1,d/2} (Wh(ai,Bs) = {}),



but only the assignmef is a solution of MPF1 = (©, @', F, a).

2.3. Optimisation Problems

In many real-life applications, we do not want tedf any solution but a
good solution. The quality of a solution is usuatigasured by some application
dependent function callembjectivefunction The goal is to find such solution that
satisfies all the constraints and minimise or masé@mthe objective function
respectively. Such problems are called Constraiatistaction Optimisation
Problems (CSOP).

Definition 2.17 (CSOP). A constraint satisfaction optimisation
problem (CSOP) is a quadrupte= (V,D,C,f) where (V,D,C) is g
standard CSP anflis an objective function which maps every
consistent (partial) assignment to a numeric value.

The task is to find such solution that is optimedjarding the objective
functionf, i.e., it minimises or maximises the objectivedtion.

Definition 2.18 (solution to CSOP).A solution to the constrair
satisfaction optimisation proble® = (V,D,Cf) is a (locally)
maximal consistent assignmewt for (V,D,C) such that thg
objective functiorf(o) is minimal (or maximal).

—

D

In order to find the optimal solution, we potertiateed to explore all the
solutions of CSP and compare their values usingoaibjective function. We
usually do not need to find the very best solutibnt some good enough is
sufficient. So, for instance, we can look for ausion where the objective
function is below a given threshold.

The objective function is sometimes expressed usngecalled soft
constraints which are very similar to standard constraingléchard constraints
in optimisation problems), but they do not neetiémecessarily satisfied. We are
looking for a solution where the number of violataft constraints is minimal.
Also, these soft constraints can be of differenigives, objective function is then
expressed for instance as a sum of weights ofitiated soft constraints.

As for minimal perturbation problem, we define andtion called
perturbation penaltywhich represents the cost of the changes indhaiasn, i.e.,
the cost of the variables assigned to differenieslthan the initial values.

Definition 2.19 (perturbation penalty).Let 1 = (©, ©, F,a) be an
MPP. Perturbation penalty is a function that maps a (partia
assignment for ©’ to a numeric value.

)
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In our work, we express this perturbation penatyaasum of individual

Definition 2.20 (perturbation penalty via non-initial assignmentstjo
Let w(v,a,b) be a cost of the variable F(v) being assignecatae
b instead ofa which is the initial assignment for variable \g.j.
v/ala, F(v)bOo. Perturbation penalty is then

g(0) = 2{w(v,a,b) | ViDWRr(a,0), v/ala, F(v)bOoc}

costs of every variable that contains an initial valug in its domain, but it is
assigned to a different value in the solutmrii.e., F(Vv) is assigned to a value
different fromg):

Formally, a minimal perturbation optimisation pretni can be defined as

follows:

Definition 2.21 (MPOP). Minimal perturbation optimisation proble
is a 6-tuple¥ = (@, @', F, a, g, wg), where

« @=(V,D,.C,T) o=V, D,C, f)aretwo CSOPs called amtial
optimisation problenand achanged optimisation problem

* Fis a mapping of the variables frabnto @',

* ais a (locally) maximal consistent assignmentdocalledinitial
assignment

e g is the perturbation penalty function that measutifferences
between the initial assignmemtand a consistent assignmentiof

* Wgis a number between 0 and 1

m

We use value yto compare importance of the objective functioof the

changed CSOP and the above discussed perturbainatiys

Definition 2.22 (objective function for MPOP)Objective functionh
for an MPOPY = (@, @', F, a, g, wy) whered'=(\V’, D", C’, f ),
is a function that maps every consistent (partiabignment of a
CSP (V',D’,C’) to a numeric value as follows:

h(o) = (1-wg) f* (0) + Wy g (0)

Solution of an MPOP is then a (locally) maximal sistent assignment of

the changed problem that minimises the objectinetian.

Definition 2.23 (solution to MPOP).A solution to the minima
perturbation optimisation problet = (@, @', F, a, g, wg) where
o'=(V', D, C, ') is a (locally) maximal consistent assignmpn
for the CSP (V’,D’,C’) such that the objective fuion h(3) from

Definition 2.22 is minimal.

-11 -
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Note that the MPOP is an extension of MPP describpethe above
chapter. We can, for instance, model MPP using MEQ# ignore objective
function f' (wyis set to 1) and if @) = |Wr(a,0)|.
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3. Timetabling

Sometimes, the words schedule, sequence and tilmeted loosely used
as if were synonymous. But, there can be certatindtions between these terms
observed in the literature [Wer85, Wren96, BKJWAN|99, Bar00, Koc02].

A timetableshows when particular events are to take placdodis not
necessarily imply an allocation of resources. Tlaugpublished bus or train
timetable shows when journeys are to be made certacplar route or routes. It
does not tell us which vehicles or drivers aredgabsigned to particular journeys.
The allocation of vehicles and drivers is partha# scheduling process. Although
timetabling is strictly the design of the pattefnjaurneys, this pattern may be
devised as part of a process which bears in mindtiven it is likely that an
efficient schedule may be fitted to the resultiogrpey pattern.

In the rail domain, the term timetabling is oftesed to refer the
construction of a path (with times) for a trainahgh a system. A class timetable
shows when particular events are to take placaninnfants’ school where a
single teacher is responsible for all the actisitié a particular class, and where
these activities all take place in the same rootimatable is nothing more than a
statement as to the times at which particular digts/will take place. By contrast,
a university examination timetable will normallyclode room assignments drawn
up in the knowledge of group sizes and of spedaiailifies needed. A university
class timetable has also to take into accountvhéadility of individual lecturers.
The activities of drawing up examination and ursityr class timetables may be
considered as scheduling activities.

A sequenceas simply an order in which activities are carriedt. For
example, the order in which jobs are processediffirahe machines of a factory,
if jobs pass through each machine in the same oigler sequence. Sequencing
may take into account costs related to one paatcijdb being followed by
another (e.g., machine conversion costs). The ermoldf sequencing jobs in these
circumstances is known as a flow shop problem.

A schedulewill normally include all the special and temponafiormation
necessary for a process to be carried out. This imclude times at which
activities are to take place, statements as to twhésources will be assigned
where, and work plans for individual personnel @chines.

The goal of scheduling in its broadest sense sotee practical problems
relating to the allocation, subject to constrairds,resources to objects being
placed in space-time, using or developing whatévels may be appropriate. The
problems will often relate to the satisfaction eftain objectives.

A.Wren defines scheduling, timetabling, sequenciagd rostering
[Wren96] as follows:
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Definition 3.1 (scheduling).Scheduling is the allocation, subject|to
constraints, of resources to objects being planespace-time, in
such a way as to minimise the total cost of somnteo$ethe
resources used.

Common examples of scheduling are transport schmepdur delivery
vehicle routing which seek to minimise the numbefwehicles or drivers and
within that minimum to minimise the total cost. Aher example is job shop
scheduling which may seek to minimise the numbemaeé periods used, or some
physical resource.

Definition 3.2 (timetabling). Timetabling is the allocation, subject to
constraints, of given resources to objects beingcqd in
space-time, in such a way as to satisfy as nearpoasible a set ¢
desirable objectives.

=

Examples of timetabling are class and examinaiimetabling and some
forms of personnel allocation (e.g., manning oflgdoeooths subject to a given
number of personnel).

Definition 3.3 (sequencing)Sequencing is the construction, subject to
constraints, of an order in which activities aréb®carried out of
objects are to be placed in some representatiarsofution.

Examples of sequencing are flow-shop scheduling #red travelling
salesman problem.

Definition 3.4 (rostering). Rostering is the placing, subject [to
constraints, of resources into slots in a patt€me may seek tp
minimise some objective, or simply to obtain a fielesallocation.
Often the resources will rotate through a roster.

Some problems may fit to more than one of the al®fmitions, and the
terms tend to be used rather loosely in the wodgland in the scheduling
community.

In some of the above satisfying or to minimisingsweferred. It should be
remarked that many of these problems which weraatihg do not have a well-
defined objective. We may sometimes justify the o$eameliorating or non-
optimising methods partly because different playeits have different views of
the objective, but in reality such methods are roftessed simply because no
optimising (or exact) method is practicable.

Timetabling has long been known to belong to tlas<lof problems called

NP-complete [CK96], i.e., no method of solvingnta reasonable (polynomial)
amount of time is known.
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3.1. Academic Timetabling Problems

There are three main classes of academic timetfhi&99]:

« School Timetabling: The week scheduling for all the classes of an
elementary or a high school, avoiding teacher mgetivo classes in
the same time, and vice versa;

« Course Timetabling: The week scheduling for all the lectures of a set
of university courses, minimizing the overlaps eftures of courses
having common students;

« Exam Timetabling: The scheduling for the exams of a set of
university courses, avoiding to overlap exams ofirses having
common students, and spreading the exams for uldersts as much as
possible.

The school timetable describes when each clasa pasticular lesson and
in which room it is to be held. The actual contefithe timetable is largely driven
by the curriculum, the number of hours of each etibjaught per week is often
set nationally. Each class consists of a set oflgupho must be occupied from
the time they arrive until the time they leave sithand a specific teacher being
responsible for the class in any one period.

Teachers are usually allocated in advance of thetéibling process, so the
problem is to match up meetings of teachers widlssg#s to particular time slots
so that each particular teacher meets every clas®orhshe is required to.
Obviously each class or teacher may not be invoiwedore than one meeting at
a time. Often, it is required that each teacheratdsast one morning or afternoon
free per week. Many other similar constraints meagte

The (university) course timetabling problem corssiatscheduling a set of
lectures for each course within a given numberooins and time periods. The
main difference with the (high) school problemhattuniversity courses can have
common students, whereas school classes are diseis of students. If two
classes have common students then they conflidtireey cannot or should not be
scheduled at the same period. Moreover, schoohézacalways teach to more
than one class, whereas in universities, a profaasy teach only one course. In
addition, in the university problem, availabilitf cooms (and their size and
equipment) plays an important role, whereas inhilgé school problem they are
often neglected because, in most cases, we camaghat each class has its own
room. We will discuss course timetabling in moré¢aden the following section
3.2.

The examination timetabling problem requires thackhéng of a given
number of exams (usually one for each course) withigiven amount of time.
The examination timetabling is similar to the cautisnetabling, and it is difficult
to make a clear distinction between the two proBlein fact, some specific
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problems can be formulated both as an examinaimatabling problem and a
course timetabling one.

Nevertheless, it is possible to state some broadégpted differences
between the two problems. Examination timetablings hthe following
characteristics (different from course timetablprgblem) [Sch99]:

« There is only one exam for each subject.

« The conflicts condition is generally strict. In fawe can accept that a
student is forced to skip a lecture due to oveilagpbut not that a
student skips an exam.

« There are different types of constraints, e.gmast one exam per day
for each student, and not too many consecutive sXameach student.

« The number of periods may vary, in contrast to seuiimetabling
where it is fixed.

« There can be more than one exam per room.

3.2. Course Timetabling

In this thesis, we will concentrate on universitpucse timetabling
problems. These problems are subject to many @ntdrthat are usually divided
into two categories: “hard” and “soft” [BKIJW97].

Hard constraints are rigidly enforced. Examplesuath constraints are:

+ No resource (students or staff) can be demandked to more than one
place at any one time.

+ For each time period there should be sufficienbueses (e.g. rooms,
invigilators, etc) available for all the eventsttinave been scheduled
for that time period.

Soft constraints are those that are desirable tualmsolutely essential. In
real-world situations it is, of course, usually imsgible to satisfy all soft
constraints. Examples of soft constraints are:

+ Time assignment: a course may need to be scheduladparticular
time period.

« Time constraints between events: one course maytodee scheduled
before/after the other.

+ Spreading events out in time: students should awe hectures of the
same course in consecutive periods or on the sagne d

+ Coherence: professors may prefer to have all teeiures in a number
of days and to have a number of lecture-free dakese constraints
conflict with the constraints on spreading eventsio time.

+ Resource assignment: professors may prefer to teaehparticular
room or it may be the case that a particular exarstine scheduled in
a certain room.
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« Continuity: Any constraints whose main purpose dsensure that
certain features of student timetables are constaiptredictable. For
example, lectures for the same course should bedstédd in the same
room, or at the same time of day.

Moreover, usual course timetabling consists of ndiffgrent departments
where each department offer a multitude of coufses which students are
required to take some and then may choose a nuaibathers. In most cases,
each department is responsible for its own timetasidd must try to take into
account the timetables of other departments.

3.2.1. Basic Search Problem

There are various definitions of the course timktgb problems. In
[Wer85, Sch99], course timetabling is defined asftdilowing search problem:

Definition 3.5 (course timetabling)There areq courses KKo,...Kg,
and for eachi, course K consists of klectures. There are
curricula $,S;,...S, which are groups of courses that have
common students. This means that coursesmmuSt be scheduled
all at different times. The number of periodspisandly is the
maximum number of lectures that can be schedulgoeabd k
(i.e., the number of rooms available at ped®dThe formulation
is the following: findyy (01 =1,..q9; Ok=1,..p), so that

 Oi=1,.92x{yklk=1,.pt=k

o Ok=1,..p2{yli=1,.09 <l

e Ok=1,.p0Ol=1,..r X{ywliOS}<1

e Oi=1,..qg0k=1,..p vy [{0,1}
whereyy = 1 if a lecture of course;ks scheduled at peridd and
yik = 0 otherwise.

The first constraint imposes that each course mposed of the correct
number of lectures. The second constraint enfditasat each time there are not
more lectures than rooms. The third constraint gmés/ conflicting lectures to be
scheduled at the same period.

Problem from Definition 3.5 can be shown to be NRiplete through a
simple reduction from the graph colouring problesag [Wer85]).

A formulation equivalent to Definition 3.5 is based theconflict matrix
instead of on the curricula. The conflict matrixJs a binary matrix such that
cj =1 if courses Kand K have common students, and=d) otherwise.

In [Wer85, Sch99], the course timetabling probletsoaincludes the
following objective function:

Definition 3.6 (course timetabling objective function).

. f(y) :Z{dikyik |I = 1,...q; k= 1,...p}
where ¢ is the desiderability of having a lecture of ceuks at
period k.
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In [Tri92] the conflict matrix G«q is considered with integer values, such
that G represents the number of students taking bothsesuK and K. In this
way G represents also a measure of dissatisfactionga adecture of Kand a
lecture of K are scheduled at the same time. The objectiveeasared by the
global dissatisfaction obtained as the sum ofiaBatisfactions of the above type.

Preassignments and unavailabilities can be expidsgeadding a set of
constraints of the following form:

Definition 3.7 (preassignments and unavailabilities).

e Hi=1,..qg0k=1,..ppk< Yk <ax
wherepik = 0 if there is no preassignment, and= 1 if a lecture
of course Kis scheduled at peridg
ax = 0 if a lecture of coursejKKannot be scheduled at periqd
ax = 1 if a lecture of coursejl€an be scheduled at perikd

In [Wer85], unavailabilities are expressed as wigasnents withdummy
lectures.

Reduction to Graph Colouring

De Werra [Wer85] shows how to reduce a course &bigtg problem (see
Definition 3.5) to graph colouring: Associate takdecturd; of each course jKa
vertex my; for each course Kintroduce a clique between verticas;
(fori=1,...9). Introduce all edges between the clique far ahd the clique K
whenever kg and K, are conflicting.

In case of unavailabilities, introduce a setpofiew vertices, each one
corresponding to a period. The new vertices are@iinected each other. This
ensures that each one is assigned to a differdatrcdf a course cannot have
lectures at a given period, then all the vertic@sesponding to the lectures of the
course are connected to a vertex correspondinggetgiten period. Conversely, if
a lecture must take place at a given time, thenvéreex corresponding to that
class is connected to all period vertices but tie representing the given period.

3.3. Approachesto Automated Timetabling

Simple, problem-specific heuristic methods can poedgood timetables,
but the size and complexity of modern universitjmeiabling problems has
provoked a trend towards more general problem msglvalgorithms, or
metaheuristics, such as simulated annealing, esolry algorithms, and tabu
search. Problem-specific heuristics may be emplagetthe context of such an
algorithm to reduce the number of possible solgtignocessed, or to locally
optimise a solution. Constraint Logic Programmigs@liso a popular approach.
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3.3.1. Sequential Methods

These methods order events using domain heuristidsthen assign the
events sequentially into valid time periods so thatevents in the period are in
conflict with each other [Car86]. In sequential heats, timetabling problems are
usually represented as graphs where events aresegpied as vertices, while
conflicts between the events are represented bgsedgor example, if some
students have to attend two events there is an bdtyeeen the nodes which
represent this conflict. The construction of a tiotifree timetable can therefore
be modelled as a graph colouring problem. Each fpeeod in the timetable
corresponds to a colour in the graph colouring lemoband the vertices of a graph
are coloured in such a way so that no two adjaceriices are coloured by the
same colour.

3.3.2. Cluster Methods

In these methods the set of events is split intgs which satisfy hard
constraints and then the groups are assigned t® piemiods to fulfil the soft
constraints. An early paper to describe this apgrosas written by White and
Chan [WC79]. Different optimisation techniques hémeen employed to solve the
problem of assigning the groups of events into tpraods. The main drawback
of these approaches is that the clusters of ewvamretsformed and fixed at the
beginning of the algorithm and that may result poar quality timetable.

3.3.3. Constraint Based Approaches

In these methods a timetabling problem is modediedh set of variables
(i.e., events) to which values (i.e., resourcefsicrooms and time periods) have
to be assigned to satisfy a number of constraBiSP9, Whi00, Wal94, Cra96,
Sch99, AM99, Bar00, CDJDO04]. Usually a number ofesuis defined for
assigning resources to events. When no rule isicagipé to the current partial
solution a backtracking is performed until a salntis found that satisfies all
constraints.

3.3.4. Meta-heuristic Methods

A variety of meta-heuristic approaches such as Isited annealing, tabu
search, genetic algorithms and hybrid approache® Heeen investigated for
timetabling. Meta-heuristic methods begin with amanore initial solutions and
employ search strategies that try to avoid locainog All of these search
algorithms can produce high quality solutions bétero have a considerable
computational cost.

-19 -



3.4. Purdue Timetabling Problem

Our work is motivated by the class timetabling peob at Purdue
University [RM03, MRO04]. Here a timetable for largecture classes is
constructed by a central scheduling office in ofdebalance the requirements of
many departments offering large classes that sstudents from across the
university. Smaller classes, usually focused adestts in a single discipline, are
timetabled by “schedule deputies” in the individdapartments. Such a complex
timetabling process, including subsequent studegistration, takes a rather long
time. Initial timetables are generated about bafear before the semester starts.
The importance of creating a solver for a dynamigbfem increases with the
length of this time period and the need to incoap®rarious changes that arise.

As for Fall 2004 semester, this problem consistaalbdut 830 classes
(forming almost 1800 meetings) having a high dgnsitinteraction that must fit
within 50 lecture rooms with capacities up to 4@Wdents. Room availability is a
major constraint for Purdue. Overall utilization thfe time available in rooms
exceeds 78%; moreover, it is around 94% for the fawest rooms. About
90,000 course requests by almost 30,000 studends aiso be considered. 8.4%
of class pairs have at least one student enrolmem@mmon.

The timetable maps classes (students, instrudimrseeting locations and
times. A major objective in developing an autordaggstem is to minimize the
number of potential student course conflicts whachur during this process. This
requirement substantially influences the automat®eétable generation process
since there are many specific course requirement:ast programs of study
offered by the University.

To minimize potential time conflicts, Purdue hasttiically subscribed to
a set of standard meeting patterns. With few exmep, 1 hourx 3 day per week
classes meet on Monday, Wednesday, and Fridayeahati hour (7:30, 8:30,
9:30, ...). 1.5 houx 2 day per week classes meet on Tuesday and Tlyulsdiag
set time blocks. 2 or 3 hourslday per week classes must also fit within specifi
blocks, etc. Generally, all meetings of a classukhde taught in the same
location. Such meeting patterns are of interesth&o problem solution as they
allow easier changes between classes having the @asimilar meeting patterns.

Another aspect of the timetabling problem that nhestconsidered is the
need to perform student sectioning. Most of thessda in the large lecture
problem (about 75%) correspond to single-sectiomrsas. Here we have exact
information about all students who wish to attergpacific class. The remaining
courses are divided into multiple sections. In tase, it is necessary to divide the
students enrolled in each course into sectionsatiiatonstitute the classes.

Currently, the timetable for Purdue University isnstructed manually.
We have proposed an automated timetabling systesulte the initial as well as
the minimal perturbation problem in [MR04, MRBO3is solution is based on
the iterative forward search algorithm describethafollowing chapters.
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Problem Representation

Due to the set of standardized time patterns andirastrative rules
enforced at the university, it is generally possitd represent all meetings of a
class by a single variable. This tying togethemefetings considerably simplifies
the problem constraints. Most classes have allimgsetaught in the same room,
by the same instructor, at the same time of dayy @e day of week differs.
Moreover, these days and times are mapped togeiitierthe help of meeting
patterns, e.g., a 2 hours3 day per week class can be taught only on Monday,
Wednesday, Friday, beginning at 5 possible times Esgure 3.1).

- Required
- Strongly Preferred

from:| 7:30 | 9:30 [11:30| 1:30 | 3:30 |:|P1€'ft"l‘lﬂl
to:| 9:30 |11:30| 1:30 | 3:30 | 5:30

Nl?lltl al

MWF

Dl‘i(‘l]ll.l aged

- Strongly Discouraged
- Prolubited

Fig. 3.1.An example of time preferences for 2 hours x 3 qeysveek class

Or, for instance, a 1 hour 2 day per week class can be taught only on
Monday+Wednesday, Wednesday+Friday or Monday+Frideginning at 10
possible times (see Figure 3.2).

Required

from:| 7:30 | 8:30 | 9:30 [10:30|11:30 [12:30 | 1:30 | 2:30 | 3:30 | 4:30 -Su,ungl,_,mﬁ_n,ﬂl
to:| 8:30 | 9:30 |10:30[11:3012:30| 1:30 [ 2:30 | 3:30 | 4:30 | 5:30 ’

Preferred

MW
N eutral

Dl‘i couraged
- Strongly Discouraged
- Prohibited

Fig. 3.2.An example of time preferences for 1 hour x 2 garsweek class

TTh

WF

In addition, all valid placements of a course ia timetable have a one-to-
one mapping with values in the variable's domaims Homain can be seen as a
subset of the Cartesian product of the possiblgirsgatimes, rooms, etc. for a
class represented by these values. Therefore,vaduwd encodes the selected time
pattern (some alternatives may occur, e.g., 1.5 kdiday per week may be an
alternative to 1 houx 3 day per week), selected days (e.g., a two ngeebarse
can be taught in Monday+Wednesday, Tuesday+Thurdta@ginesday+Friday),
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and possible starting times. A value also encodlesinstructor and selected
meeting room. Each such placement also encodesprigferences (soft
constraints), combined from the preference for timeom, building and the
room's available equipment. Only placements wakidvtimes and rooms are
present in a class's domain. For example, whemgpugter (classroom equipment)
is required, only placements in a room containingpeputer are present. Also,
only rooms large enough to accommodate all thelledrstudents can be present
in valid class placements. Similarly, if a timecsliis prohibited, no placement
containing this time slice is in the class's domain

The variable and value encodings described abaee las with only two
types of hard constraints to be implemented: resoaonstraints (expressing that
only one course can be taught by an instructon ar particular room at the same
time), and group constraints (expressing relatioesveen several classes, e.g.,
that two sections of the same lecture can not bghtaat the same time, or that
some classes have to be taught one immediatelyaafteher).

There are three types of soft constraints in thablem. First, there are
soft requirements on possible times, buildingsmeoand classroom equipment
(e.g., a computer or a projector). These prefeeaoe expressed as integers:

« -2 ...strongly preferred

« -1... preferred

+ 0 ... neutral (no preference)
« 1...discouraged

« 2 ...strongly discouraged

As mentioned above, each value, besides encodiolgsa's placement
(time, room, instructor), also contains informatiabout the preference for the
given time and room. Room preference is a comhlmnatif preferences on the
choice of building, room, and classroom equipmdite second group of soft
constraints is formed by student requirements. Edgtient can enrol in several
classes, so the aim is to minimize the total nundjestudent conflicts among
these classes. Such conflicts occur if the studannot attend two classes to
which he or she has enrolled because these clésses overlapping times.
Finally, there are some group constraints (addiiaelations between two or
more classes). These may either be hard (requiregraehibited), or soft
(preferred), similar to the time and room prefeesn(from -2 to 2).

Additional Constraints

Except the constraints described above, there axeral additional
constraints which came up during our work on teigture timetabling problem.
These constraints were defined in order to makeatt®matically computed
timetable solution acceptable for users from Putdnizersity.

First of all, if there are two classes placed oiter another so that there is

no time slot in between (also called back-to-baldsses), distances between
buildings need to be considered. The general fgesinhat different rooms in the
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same building are always reasonable, moving tobthikeling next door is to be
discouraged, a couple of buildings away stronglcoliiraged, and any longer
distance prohibited.

Each building has its location defined as a paicadrdinates [x,y]. The
distance between two buildings is estimated by iHesl distance in a two
dimensional space, i.e.,

(A% + ay?)”

whereax anday are differences between x and y coordinatesebthildings. As
for instructors, two back-to-back classes are sifda to teach when such
difference is more than 200 meters (hard consjtaiftte other options (soft
constraints) are:

- if the distance is zero (same building), then noatty,

» if the distance is above zero, but not more thanm&lers, then the
placement is discouraged,

+ if the distance is between 50 and 200 meters, ldeement is strongly
discouraged

Our concern for distance between back-to-back etadsr students is
different. Here it is simply a question of whetliteis feasible for students to get
from one class to another during the 10-minute ipgsperiod. At present, the
distance between buildings not more than 670 meiersonsidered as an
acceptable travel distance. For the distance aléd\@®e meters, the classes are
considered as too far. If there is a student aitgntdoth classes, it means a
student conflict (same as when these classes arlapping in time).

Next, since the automatic solver tries to maximidee overall
accomplishment of soft time and room constraintefggences), the resultant
timetable might be unacceptable for some deparsndiie problem is that some
departments define their time and room preferenua® strictly than others. The
departments which have not defined time and roafepences usually have most
of their classes taught in early morning or lateréeng hours. Therefore, we
introduced the departmental time and room pref@®rzalancing mechanism.
The solver is trying to fulfil the time and roomeferences as well as to balance
the used times between individual departments. iit@ans that each department
should use each time unit (half-hour, e.g., Monda830 — 8:00) in a similar
portion to the other time units used by the depantm

At first, for each department and time unit, they@ numbestating how
many times each time unit can be used (i.e., howynpdacements of all classes
from the department can be placed over the timg.Uror instance, if there are
two 1 hour x 2 days per week classes, the timeWeridnesday 8:00 — 8:30 can be
used four times, i.e., each of these classes capldmed either on Monday-
Wednesday or Wednesday-Friday from 8:00 till 9:0@Gan, amveragefill factor
is computed for each department and time unit & ratio between the computed
number of placements using the time unit and tke ttumber of placements of
all classes from the department (it is sixty far #bove example with two classes,

-23 -



each class can be placed in thirty different timhedl possible times are allowed).
So, this factor states the overall usage of a timefor a department. The reason
for computing such number is the fact that somessirare used much more than
others (e.qg., if the department has all the classesiours hour x 3 days per week
time pattern, only Monday, Wednesday and Fridayusesl, see Figure 3.1). The
initial allowance which states how many times each time unit candssl by a
department is computed from thisaximal fill factor it is themaximal fill factor
increased by the given percentage (20% is usedritests) and rounded upwards
to the first integer number. Theverall department balancingenalty of a
solution is the sum of overruns of thigtial allowance over all time units and
departments. The intention is to keep this numbdoa as possible.

Finally, since all of the classes are at least tiwmoe slots long (60
minutes), an empty time slot of a room which isreunded by classes on both
sides (i.e., the room is not used for 30 minutdsvéen two consecutive classes)
is considered useless — no other class can uBedtnumber of such useless half-
hours should be minimized. Also the situation whewom is occupied by a class
which is using less tha#t of its seats is discouraged. Both these soft cainss
are considered much less important than all thetcaints described above.
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4. lterative Forward Search Algorithm

The iterative forward search (IFS) algorithm that propose here is based
on ideas of local search methods [MF00]. HoweweGantrast to classical local
search techniques, it operates over feasible, thoum necessarily complete
solutions. In such a solution, some variables catefi unassigned. Still all hard
constraints on assigned variables must be satis@édilarly to backtracking
based algorithms, this means that there are natiook of hard constraints.

Working with feasible incomplete assignments hager® advantages
compared to the complete infeasible assignmentsuthally occur in local search
techniques. For example, when the solver is nad &blfind a solution (i.e., a
complete feasible assignment), a largest feasilalgiap assignment (using
cardinality) can be returned. Especially in intéikaec timetabling applications,
such assignments are much easier to visualize, @veng the search, since no
hard constraints are violated. For instance, twctules never use a single
resource (e.g., a classroom) at the same time. dMergbecause of the iterative
character of the search, the algorithm can eataly, stop, or continue from any
feasible assignment, either complete or incomplete.

In this section, we present the iterative forwagdrsh algorithm which is
the backbone part of this thesis as well as thettibling software made for the
Purdue University. The framework based on thisdak®rithm (written in Java) is
described in more detail in appendixes A and & Well extendable and it can be
used for solving lecture timetabling problems a$l e for other constraint-based
problems. Some of the general, problem indepengldensions of this algorithm
are described in the following chapter 5. In oridepresent the general purpose of
this algorithm, it is described here for solvingigeal finite constraint satisfaction
and optimisation problems.

4.1. Related Works

Local search algorithms [MF0Q] (e.g., min-confli®tJP92] or tabu search
[GH97]) perform an incomplete exploration of theasd space by repairing an
infeasible complete assignment. Local search dlgns move from one complete
(but infeasible) assignment to another, typicatlyai non-deterministic manner,
guided by heuristics. In general, local searchritlgms are incomplete, they do
not guarantee finding a complete solution satigfyatl the constraints. But, unlike
systematic search algorithms, they do not sufi@mfthe early mistake problem:
as soon as a decision is suspected to lead todaeteh it can be undone, without
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having anything to lose. Also, these algorithms rbayfar more efficient (wrt.
response time) than systematic ones in finding latiea. For optimisation
problems, they can reach a far better quality givan time frame.

4.1.1. Local Search Approaches

The termlocal searchor neighbour searclexpresses the idea that these
algorithms modify an inconsistent assignment lgcath move to a better
assignment. During each iteration step, only assegris from theneighbourhood
of the current assignment are considered and ortbeoh is picked. There are
many ways how to define neighbourhood of an asseggmimJsually, a value of
one variable is changed.

There are two basic local search algorithm schehikkglimbing andmin-
conflict Both of them usually start from a randomly (owfistically) selected
assignment and they repeatedly perform local stepheir neighbourhood till
a solution is found or the time limit exceeded. ,Bbty differ in the way how the
neighbour assignments are selected.

Hill-climbing Algorithm

Hill-climbing [MFOO] always selects the best assignment outllotha
neighbours. This means the assignment which miesnine number of violated
constraints. In case of optimisation problems, itkp up the neighbour
assignment which minimizes the objective functierg(, the number of violated
soft constraints) among the assignments with thremal number of violated hard
constraints. When there is no better assignmentttea current one, the search is
stuck in a local optimum. Thieill-climbing algorithm usually restarts the search
from another initial (e.g., randomly selected) gssient. The name of the
algorithm, hill-climbing, is derived from its original principle when a nraym
was searched by climbing — increasing the evaloatadue.

Min-conflict Algorithm

On the other handmin-conflict [MJP92] algorithm chooses the best
assignment only from a subset of the neighbougassents. Usually, it randomly
selects any conflicting variable, i.e., a variattiat is involved in an unsatisfied
constraint, and then picks a value which minimizee number of violated
constraints. If no such value exists, it picks @nty one value that does not
increase the number of violated constraints (theeotl value of the variable is
picked only if all the other values increase thenbar of violated constraints).
Note, that the purenin-conflictsalgorithm is not able to leave a local minimum.
In addition, if the algorithm achieves a strictdbeninimum, it does not perform
any move at all and, consequently, it does notitexte.

Min-conflict Random Walk Algorithm

Because the pure min-conflict algorithm cannot geydmd a local
minimum, some noise strategies were introducetl imong them, theandom-
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walk strategy has become one of the most popular ormgsa lgiven conflicting
variable, the random-walk strategy picks randomlyalue with probability .,
and applies the min-conflict heuristic with probapil- p.. Note that the same
strategy can be used Hill-climbing as well, i.e., with the probabilityp a
random neighbour assignment is selected.

Tabu Search Algorithm

Tabu search[GH97] is another method to avoid cycling and et
trapped in a local minimum. It is based on the amtof tabu list which is a
special short term memory (usually containing paisariable, value>) that
maintains a selective history, composed of preWyoascountered configurations
or more generally pertinent attributes of such murhtions. A simpletabu-
searchstrategy consists in preventing configurationghef tabu list from being
recognised for the next Iterations (k, called tabu tenure, is the size of tabu list).
Such a strategy prevents the search from beingecm short term cycling and
allows the search process to go beyond local opfirabu restrictions may be
overridden under certain conditions, calkspiration criteria Aspiration criteria
define rules that govern whether next configuratirtonsidered as a possible
move even when it is tabu. One widely used aspimatiriterion consists of
removing a tabu classification from a move when itih@/e leads to a solution
better than that obtained so far.

4.1.2. Hybrid Approaches

The idea of mixing traditional systematic searclprapches with local
search is not new. Those hybrid approaches havie lgdod results on large scale
problems. Three categories of hybrid approachesbeafound in the literature
[PG96, Sch97, RR98, JL02, Pre04]:

« performing local search before or after a systesrssarch;

+ performing a systematic search improved with |la@hrch at some
point of the search: at each leaf of the tree, (oger a complete
assignment) but also at nodes in the search treg (n partial
assignments);

« performing an overall local search, and using syate search either
to select a candidate neighbour or to prune theelsespace

Decision Repair Algorithm

For instance, the&ecision repairalgorithm (see Fig. 4.1.), presented in
[JLO2] falls into the third category above. It repedly extends a set of
assignments (called decisions) satisfying all tbastraints, like in systematic
search algorithms. It performs a local search pairethese assignments when a
dead-end is reached (i.e., these decisions becowomnsgistent). After these
decisions are repaired, the construction of that&ml continues to the next dead-
end.
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pr ocedur e decision-repair(V,D,C)
/la CSP problem is the parameter
Cp = any initial set of decisions;

/ldecisions are constraints as well, i.e., Variable =value
whi | e conditions of failure not satisfied do
C=C 0OCp

swi t ch obviousinferences (o(Vv,D,C")
case no solution:
k = conflict explaining the failure;
C p= neighbour (Cp, k);
case solution:
return Cj;
defaul t:
C p= extend (Cyp);
end switch
end while
return failure;
end procedure

Fig. 4.1.The decision-repair algorithm

The decision-repair algorithm starts with a pai@aution which is a result
of a set of decisions. It first applies a filterirtgchnique ®. When no
inconsistency is detected, the algorithm adds asiecthat extends the current
partial solution, and the search continues. Wheead-end is reached, we know
that there is an incompatibility between the decisimade so far. The algorithm
tries to repair that set of decisions. Aonflict is identified (the smaller the
conflict, the better), and the conflict is usecthmose a judicious neighbour of the
current set of decisions. For example, a judicioeighbour may be obtained by
performing a local change on the current set ofisitmts: negate one of the
decisions that occur in the conflict. The functiobviousinferencds able to
examine a set of constraints in order to decidethdrdo stop the computation or
not.

Constrained Local Search Algorithm

Another approach is used in thmnstrained local searchalgorithm
presented in [Pre00, Pre04]. The algorithm is congtd by randomizing the
backtracking component of a systematic search ighgor that is, allowing
backtracking to occur on arbitrary chosen variablefias an integer parameter
called the noise level stating on how many varsihe algorithm will backtrack
(selected by procedubmcktrackVariables See Figure 4.2 for the algorithm.

The constrained local search algorithm iterativedtends a partial feasible
assignment (via assigning a selected value to ecteel variable, only values
consistent with the existing assignments are cemnsd) untii a complete
assignment is found or a dead end is reached. \ilieerdead end is reached,
which means that an unassigned variable with naevalonsistent with the
existing assignment is selected, a given numb&aonébles is unassigned (stated
by noise level parametet, selected either randomly or heuristically) and
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unpropagated if a filtering algorithm is used. Takgorithm then continues
extending the partial assignment again.

pr ocedur e cls(V,D,C, g) Il eisthe noise level
o={} /lcurrent assignment
whi | e o is not complete do
assigned = {A OV | A assigned in o}
unassigned = V — assigned;
A = selectVariable (unassigned);
values = {a 0D, o O{A/a}is consistent};
i f (values is enpty) then
for all v in backtrackVariables (assigned, g) do
unassign v in o and unpropagate;
end for
el se
a= selectValue (D p);
o= o O{Aa};
end if
end while
return o;
end procedure

Fig. 4.2.The constrained local-search algorithm

Constructive Backtracking-free Algorithm

A similar approach, combining backtracking-free caithm and local
search is presented in [Sch97]. The algorithm titkezly extends a feasible partial
assignment until a dead-end is reached. At thiatpdi performs a local search
phase which makes local changes on the currenpassignment. Thereatfter,
the construction continues up to the next dead-&heé. whole procedure stops
either when a complete assignment is reached (p®wsanswer) or when a
predetermined number of local search phases haae &ecomplished (negative
answer). See Figure 4.3 for the algorithm.

This approach differs from previous ones in attléae aspects: At first, it
revises the partial assignment by making use oflaun of local search, instead
of a fixed number of changes. Next, the local clesngre selected with the
additional objective of improving the possibility the partial assignment to be
completed. That is, local search is driven not ohly the feasibility (and
optimality) of the current partial assignment, lalso by so calledook-ahead
factor. Furthermore, in order to make local search dffectthe respective
weights given to the three different componentshef cost function that guides
local search (feasibility, optimality, and look-alag are dynamically changed.
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pr ocedur e cbf(V,D,C)

o={} /lcurrent assignment
whi | e o is not complete do
assigned = {A OV | A assigned in o}
unassigned = V — assigned;
A = selectVariable (unassigned);
values = {a 0D, o O{A/a}is consistent};
i f (values is enpty) then
i f lasttrial t hen return failure;
p= o,
r epeat
move = selectMove ( o);

makeMove(move, o);

if improves (o, B) then p= o;
unti | last iteration or lower bound reached;
o= B
el se
a= selectValue  (values);
o= o O{A/a}
end if
end while
return o;
end procedure

Fig. 4.3.The backtracking-free algorithm combined with LS

The procedurémprovesrelies on a score function that assesses thetyjuali
of each assignment. Such function counts the nuwibesnstraint violations, thus
measuring the distance to feasibility. For optim@aproblems, it also takes into
account the objective function of the problem. Timection also includes a look-
ahead factor (which estimates the likelihood of tmaining sub-problem to be
solvable). Furthermore, since it is computed ontigarassignments, only
constraints regarding the instantiated variables taken into account. For the
same reason, the objective function is not competettly, but it is generally
estimated using a lower bound (in a similar way ksnch-and-bound
procedures).

Unlike the above approaches, our algorithm openatee like the local
search method — it does not execute a local sedireha dead-end is reached but
it applies the exact same local steps during seémobach iteration step a partial
feasible assignment can be extended by an arbirssignment of a value to a
variable and the consistency is enforced by a probhdependent consistency
technique which can unassign some of the alreasigraed variables in order to
make the partial assignment consistent with thecsedl assignment. Moreover,
this makes the algorithm easy to implement and #&bsextend with various
selection heuristics and other techniques likarfstance filtering algorithms.
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4.2. lterative Forward Search Algorithm

Iterative forward search works in iterations (segufe 4.4. for algorithm).
During each step, a variable A is initially selectdypically an unassigned
variable is chosen like in backtracking-based seaka assigned variable may be
selected when all variables are assigned but thei@o found so far is not good
enough (for example, when there are still manyatiohs of soft constraints).
Once a variable A is selected, a valagrom its domain R is chosen for
assignment. Even if the best value is selected teviea “best” means), its
assignment to the selected variable may cause bsangeconflicts with already
assigned variables. Such conflicting assignmerdgsreamoved from the solution
and become unassigned. Finally, the selected vial@ssigned to the selected
variable.

pr ocedur e ifs(V,D,C, o) [/l an initial assignment o is the parameter
o= q /I current assignment
= o /I best assignmen
whi | e canContinue (o) do /l CSP problem @=(V,D,C) is
A= selectVariable (o) /I a global parameter
a= selectValue (g, A); // for all used functions
n = conflicts (0, A a); /[conflicting assignments
o=( o- n) O{Aa} /Inext assignment
if better (o, B) then p= o
end while
return g;
end procedure

Fig. 4.4.The iterative forward search algorithm

The algorithm attempts to move from one (partieBdible solutioro to
another via repetitive assignment of a selectedevalto a selected variable A.
During this search, the feasibility of all hard stmints in each iteration step is
enforced by unassigning the conflicting assignment€omputed by function
conflicty. The search is terminated when the requestedi@olis found or when
there is a timeout expressed, for example, as amma&onumber of iterations or
available time being reached. The best solutiondas then returned.

The above algorithm schema is parameterized by rakevfanctions,
namely

+ the termination condition (functiacanContinug,

+ the solution comparator (functidoettes),

+ the variable selection (functi@electVariablg and
+ the value selection (functigelectValug
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Formalization

Constraint satisfaction can be defined as follows:constraintc of
variables gaa&,..a, is satisfied with an assignmeunt if the assignment contains
all variables a&,..a, and the constrairtis satisfied with this assignmemtor the
assignmeno can be extended to an assignmenthich contains all variables
au1,&,..8 such that the constraiats satisfied with this assignment

Definition 4.1 (restriction of an assignment to a constrairiigt © =
(V,D,C) be a CSP, restriction of an assignmerto a constraint
cCis

olc ={v/a| vlalo & vdon(c)}
wheredon(c) represents a set of variables on which thetcaing
c is defined.

Definition 4.2 (constraint satisfaction).Constraint €IC is satisfied
with an assignmera of a CSR = (V,D,C) if and only if

* |olc|=pon(c)| and of|c) holds true or

[y o assignment o® where y|c|=dom(c)| and c{|c)

During the search, after each iteration step, we lzan assignmemt of a
subset of all variables (as described in Chaptey. Zhis assignment is feasible,
which means that every hard constraint is satisfigl this assignmeru:

Definition 4.3 (feasible assignmentAssignmento of a CSPO =
(V,D,C) is feasible if and only if all constraingse satisfied with
the assignmemd, i.e.,[c0C

* |olc|=pomn(c)| and of|c) holds true or

[y o assignment o® where y|c|=dom(c)| and c{|c)

This means that after each iteration step we havasaignment which is
consistent wrt. a consistency technique that onfprees satisfaction of all hard
constraints as defined above. Similarly, consistesfcthe assignment respecting
any arbitrary consistency technigi¢see Definition 2.4) can be enforced during
the search. This means that after every iteratiep, sve have an assignmemt
which fulfils the consistency chedf®a), where( is the consistency technique
ando is the solved constraint satisfaction problem.

The task of the functioponflictsis to enforce such consistency. It returns
a subset of the current assignmegnt o, such that the new assignmeat-(n) O
{A/ a} is consistent respecting the used consistendynigael (A is the variable
anda is the value selected in the current iteratiop)ste

Definition 4.4 (property of function conflicjsLet ® = (V,D,C) be a
CSP, 0 be a consistent (partial) assignment@f ALV be a
selected variable aral 1D be a selected value. Functioonflicts
returnsn 0 o such that the assignmept= (0 - n) O {A/a} is a
consistent (partial) assignment @ respecting some given
consistency techniquge
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In the above Definition 4.4, we assume that indbenain D\ of variable
A are only values that are themselves consisteht ali constraints respecting the
consistency techniqug This means that for every valaelDa, consistency check
{(©{A/a}) is true. As for the consistency based on comstraatisfaction (see
Definitions 4.2 and 4.3), this means that for ewaluea from Da, all constraints
are satisfied with the assignment &\ (i.e., OcOC c({A/a}) is true). Otherwise,
if such an inconsistent valuieis selected, the resultant assignmeoan never be
consistent since it contains the assignmentafjAhat is not consistent (e.g.,
[(OC, c({A/a}) is false. These inconsistent values can be permanentiredd
from the domains at the beginning of the search wit harm (e.g., by calling of
the consistency technique on the problem with aptgrassignment), since there
cannot be a (partial) consistent assignment cantasuch values.

Obviously, we are looking for a strict subset aé tturrent assignmeiat
(concerning cardinality) which satisfies the prdpefrom Definition 4.4.
A minimal subset is the best, but it could be egpanto compute. Our current
implementation does not try to find such a minisetl of “conflicting” variables.
Instead, it tries to computeg@odone quickly.

There is also a correspondence between these $etsouwflicting”
variables andhogoodsets in backtracking based algorithms [JDB00].ofavod
set is a subset of the current (partial) assignrtieitcannot be satisfied (i.e., no
feasible solution contains this set). Potentialyariable, different from A, from
each such nogood set that can be computed fromsgignment O {A/ a}, needs
to be selected into our set of conflicts.

4.2.1. Termination Condition

The termination condition determines when the allgor should finish.

For example, the solver should terminate when tagimmal number of iterations
or some other given timeout value is reached. Mggeat can stop the search
process when the current assignment is good encewgh, all variables are
assigned and/or some other solution parametersnatee required ranges. For
example, the solver can stop when all variablesaasggned and less than 10% of
the soft constraints are violated. Terminationha process by the user can also
be a part of the termination condition.

4.2.2. Solution Compar ator

The solution comparator compares two assignment® c¢turrent
assignment and the best assignment found. This aasop can be based on
several criteria. For example, it can lexicograpltycorder assignments according
to the number of unassigned variables (a smalleten is better) and the number
of violated soft constraints.
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4.2.3. Variable Selection

As mentioned above, the presented algorithm regugrefunction that
selects a variable to be (re)assigned during theuiteration step. This function
is equivalent to a variable selection criteriortamstraint programming. There are
several guidelines for selecting a variable [De¢h08local search, the variable
participating in the largest number of violatiors usually selected first. In
backtracking-based algorithms, the first-fail piple is often used, i.e., a variable
whose instantiation is most complicated is selediest. This could be the
variable involved in the largest set of constramtshe variable with the smallest
domain, etc.

We can split the variable selection criterion irtteo cases. If some
variables remain unassigned, the “worst” variableag them is selected, i.e.,
first-fail principle is applied. This may be, foxample, the variable with the
smallest domain or with the highest number of faard/or soft constraints.

The second case occurs when all variables are nessig8ecause the
algorithm does not need to stop when a completlieaassignment is found, the
variable selection criterion for such case hasdocbnsidered as well. Here all
variables are assigned but the assignment is romt goough, e.g., in the sense of
violated soft constraints. We choose a variable sghohange of a value can
introduce the best improvement of the assignmenindy, for example, be a
variable whose value violates the highest numbepfifconstraints.

It is possible for the assignment to become incetephgain after such
an iteration because a value which is not condistéh all hard constraints can
be selected in the value selection criterion. Tais be also taken into account in
the variable selection heuristics.

4.2.4. Value Sdection

After a variable is selected, we need to find ai@ab be assigned to the
variable. This problem is usually called *“value es#ion” in constraint
programming [Dech03]. Typically, the most usefuliad is to select the best-fit
value. So, we are looking for a value which is thest preferred for the variable
and which causes the least trouble as well. Thiansi¢hat we need to find a
value with the minimal potential for future confBcwith other variables. For
example, a value which violates the smallest nunubesoft constraints can be
selected among those with the smallest numberraf ¢@nflicts.

To avoid cycling, it is possible to randomize tledue selection procedure.
For example, it is possible to select the N bekiesfor the variable and choose
one of them randomly. Or, it is possible to selacset of values so that the
heuristic evaluation for the worst value in thiogp is maximally p percent
higher than the heuristic evaluation of the bestevdwhere smaller value means
better evaluation). Again, the value is selectatlomly from this group. This
second rule inhibits randomness if there is a singty good value.
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4.2.5. Conflicting Assignments

Like in other traditional constraint satisfactiorarheworks, the input
problem consists of variables, values and consgalach constraint is defined
over a subset of the problem variables and it pithisome combinations of
values which these variables can simultaneoushe.tdk many CSPs, all
constraints are binary (or the problem is transtmmto an equivalent problem
with only binary constraints before the search t&rted) since most of the
consistency and filtering techniques are designdy for binary constraints. In
such a case, the functi@onflictsis rather simple and it returns an unambiguous
subset of the given assignment. It enumerateb@itdnstraints which contain the
selected variable and which are not consistent thighselected value. It returns
all the variables of such constraints, differeotirthe selected variable.

Definition 4.5 (function_conflictdor binary CSP)Let® = (V,D,C) be
a binary CSPg be a feasible (partial) assignment&fACV and
allDa. Function conflicts returnsn 0 o such thatn = {B/b |
B/bOo & ((B=A & b#a) O [kOC (~c(cU{A/ a}) & {B/ b} o |c))}

All assignments frono that are involved in any constraint not satisfied
(with the new assignmeirat [J {A/a}) are returned. Also, if the selected variable
A is already assigned (so a different value has lsedected for A), it has to be
unassigned first (previous assignment of the vigiakis to be returned).

Lemma4.1Let® = (V,D,C) be a binary CSP (i.€lc[0C |[dom(c)|=2)
that is arc consistengy be a feasible (partial) assignment @f
A0V andallDa. Functionconflicts from Definition 4.5 returns &
set of conflicting assignmentg ] o that is minimal (concernin
cardinality ofn) andy = (0 - n) O {A/a} is a feasible (partial
assignment o®.

152

Q0

Proof of feasibility: Lety = (0 - n) O {A/a} be infeasible, then there is a
constraint €1C that is not satisfied witl. This means that c is also not satisfied
with o O {A/a}. Since ¢ was satisfied witlw (o is a feasible assignment),
Aldom(c). Because c is binary, there iSl@n{c), AZB. There are the following
possibilities:

« [bODy, {B/b}Uo : but since tc({A/a, B/b}) & {B/ b}Uao|c), {B/b} is
in the set, c is satisfied witly which is a contradiction.

« [ObODy, {B/b}0o : but sincell' Dy c({A/a, B/b’}) (since c is
satisfied ino and the problem is arc consistent), c is satisfied
o 0 {A/a} and therefore also iro(- n) O {A/ a}.

Proof of minimality: C{B/b} O n, either

« B = A andb # a: In this case {Bj} has to be im since A cannot be
assigned twicey(has to be an assignment),
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« or[kOC -c({A/a, B/h}) since all constrains are binary.

In both cases, {B} has to by contained in any conflicting set othisey
is either not assignment (A is assigned twice) ot feasible (there exists a
constraint that is not satisfied). So, every satarfflicting variables has to contain
the set) computed according to the Definition 45.

On the other hand, most of real problems have yplehtmulti-variable
constraints, like, for instance, a resource comgtia timetabling. Such resource
constraint enforces the rule that none of the everitich are using the given
resource can be overlapping in time (if the reseuras capacity one) or that the
amount of the resource used at a time does noedxte capacity. It is not very
useful to replace such a resource constraint bgt afsbinary constraints (e.g.,
prohibiting two overlapping placements in time wbtparticular events using the
same resource), since this approach usually engsthighousands of constraints.
Also, there is usually a much more effective carsisy and/or filtering technique
working with the original constraint (for instancécumulative” constraint
[RMO3] is usually used for modelling resource caoaisits in CLP).

Using multi-variable constraints, the set of carflireturned by function
conflicts can differ according to its implementation (butnitust satisfy the
property from Definition 4.4). For instance, we chave a constraint A+B=C
where A and C are already assigned to A=3 and Ce5d = {A/3, C/5}). Then
if the assignment B=3 is selected, either A or Cbhoth A and C can be
unassigned to make the problem {A/3, B/3, C/5} dstemnt with the constraint
A+B=C. Intuitively, there should be a minimal numloé variables unassigned in
each iteration step (we are trying to increasentiraber of the assigned variables
during the search). Also, for many constraints pgossible to find inconsistencies
even when not all variables of the constraint dmeady assigned. For instance, if
there are two lectures using the same room atatime $ime, we know that one of
them needs to be unassigned even when there assigmed lectures which will
also need to be placed in that room.

In our IFS solver (described in more detail in Apgix A), each hard
constraint needs to implement the procedtomputeConflictsvhich returns all
the already assigned variables that are incompatith the selected assignment.
This procedure is called for all constraints whagmntain the selected variable in
an ordered manner (in the order the constraint® weserted into the system).
Furthermore, this order can be changed during tk&ch. Moreover, the
computed set of conflicts is passed to tbh@mputeConflictsprocedure as a
parameter, so the constraint can “see” which cosflare already selected for
unassignment by previously processed constrairtan use this information to
unassign a smaller number of variables. For exampléhere is a constraint
A+B=C not satisfied with the new assignment cCthe computeConflicts
procedure can pick the variable (either A or B} iealready selected by some of
the prior constraints. This way, we are not comqutine very minimal set of
conflicts, however, we allow for computing this setan efficient way. It can be
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also tuned for a particular problem by changingdhder of constraints. For our
timetabling problems, we do not need to take tihikeninto account, since most
of the constraints are resource constraints of leiog capacity where the
conflicting assignments are exactly given (i.ee #iready assigned events which
are using the same resource as the selected onvehagidoverlap in time with it).
The functionconflictsis outlined in Figure 4.5.

procedur e conflicts (o, A a)
n =} /lresultant set of conflicting variables
for each constraint ¢ 0C so that AOdom(c) in a given order do
n= n O computeConflicts (c, oA a n);
end for
return n;
end procedure

Fig. 4.5.The_conflictgprocedure

Also note that each constraint can keep its noabout the assigned
variables. For instance, the resource constraiatpdrticular room can memorize
a look-up table stating what lecture is assignedavimat time slot(s), so for the
computation of the conflicting lectures it only ksothrough the appropriate fields
of this table. The implementation is based on tistg to “variable assigned” and
“variable unassigned” events. Also note that tlEgadIt consistency technique is
defined on a problem level and it can be changedhbyore dedicated one,
implemented for a particular problem. For more iigtaee Appendix A.

Let computeConflictg, o, A, a) be a function similar to the procedure
computeConflictdrom Figure 4.5 that returns assignments conflgctmith the
new assignmerda 0 {A/a} for the given constraint c. The only differencethat
the function in Figure 4.5 gets a list of inconsmtassignments computed 0
{A/ a} on the previously visited constraints. The foliogy Lemma 4.2 shows that
using such incremental computation of the set afflmting variables still
produces the feasible (partial) assignment at tigdeo¢ each iteration.

Lemma4.2Let ® = (V,D,C) be a CSPg be a feasible (partia
assignment o®, AV be a selected variable arailDs be a
selected value. Ific0C n. = computeConflicte, o, A, a) is a
subset ob so that c(@ - n¢) O {A/ a}), the new assignment= (0 -
n) O {A/a} wheren = { B/b | CcOC Aldom(c) & B/bln} is
a feasible (partial) assignment®f

N—r

Proof: The proof of Lemma 4.2 immediately follows frofmetdefinition
of a feasible assignment (see Definition 4.3) stathat an assignment is feasible
if all constraints are satisfied with the assignmge., [0clIC c(y)) and from the
fact thaty= (0 -n) O {A/a} O (0 - ne) O {A/a} sincen U n.. Becaus® is feasible
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assignment, all constraints that does not contaiiable A are satisfied in the new
assignmeny as wello

4.3. IFSfor Minimal Perturbation Problem

Let us first describe the meaning of perturbationour approach. The
changed problem differs from the initial problemibput perturbations. An input
perturbation means that a variable must have diftevalues in the initial and
changed problem because of some input changesdegurse must be scheduled
at a different time in the changed problem).

The solution to the minimal perturbation problemRR) [SW00, BMRO3,
BMRO04] can be evaluated by the number of additiggexturbations. They are
given by subtraction of the final number of peratrbns and the number of input
perturbations. An alternative approach is to cagrsidiriables in the initial and in
the new problem which were assigned differently RR, BMR03, BMRO04]. As
before, we need to minimize the number of suctedkfiitly assigned variables.

Despite the local search nature of the algorithimré are some
adjustments needed to be able to effectively sthlgeMPP. The purpose of these
adjustments is to minimize the number of additiopatturbations. The easiest
way to do this is to adopt variable and value selaceuristics which prefer the
previous assignments (but not all the time, to éwyicling).

For example, value selection heuristics can be tadoj select the initial
value (if it exists) randomly with a probability & can be rather high, e.g.,
between 50-90%). If the initial value is not sedektthe original value selection
can be executed. Also, if there is the initial eain the set of best-fit values (e.g.,
among values with the minimal number of hard anfi sonflicts), the initial
value can be preferred as well. Otherwise, a veaurebe selected randomly from
the constructed set of best-fit values. A disadsg@tof such selection is that the
probability P has to be selected carefully: ifsittoo small, the search can easily
move away and the number of additional perturbatiall grow during the
search. If it is too high, the search will sticlo tmuch with the initial solution and,
if there is no solution with a small amount of adufial perturbations it will be
hard to find a feasible solution.

Another approach is to limit the number of addiéibperturbations during
the search. Furthermore, like in branch and bosadh a limit can be decreased
when a feasible solution with the given number eftgrbations is found. For
example, if the number of additional perturbatisgqual to or greater than the
limit, the initial value has to be selected. Othisey if the number of additional
perturbations is below the limit, the original valselection strategy is followed.
The number of additional perturbations can alsdute variables that are not
assigned yet whose initial values cause a hardliconiith the current
assignments.

The above approaches can also be combined togetheh can help to
divide their influence during the search.
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Variable selection heuristics can also be adopteithtl a solution with a
small number of perturbations. For example, whérnvaliables are assigned, a
variable that has an initial value but such valienot assigned to it should be
selected, e.g., randomly among all variables thatehnot the initial value
assigned, and that participate in the highest numieolated soft constraints.

44, Summary

In this section, we have presented the iterativevdod search algorithm
which is a mixture of systematic search and thall@earch approach. In the
following section, we will discuss some of its exd®ns and later on we will
present some computational results of this algaritised on a CSP problem as
well as on the large lecture timetabling problenmPamdue University.

The very first version of this algorithm was presehin [MBO1] and in
the diploma thesis [Mul01] as an ad-hoc solutiom fbe iterative lecture
timetabling problem. Its application on lecture etabling problem on
Mathematics and Physics Faculty of Charles Unitergas presented in [MBO02].
The applicability of this algorithm on the n-quegm®blem was presented in
[Mul02].

The iterative forward search algorithm in the famit is presented in this
chapter for solving of a general CSP with variouxsemrsions (conflict-based
heuristics, maintenance of arc consistency, itseresion towards dynamic
backtracking) was presented in [MBRO4]. Its appilooa to the minimal
perturbation problem of Purdue University timetaglwas presented in [MRO04,
MRBO05]. Also, we used this algorithm in comparisaith a branch&bound
algorithm designed for solving MPP problem in [BMRGvhere it was better
than the proposed branch&bound algorithm.
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5. |IFSExtensons

In this section, we present some of the problenejetident extensions of
the iterative forward search algorithm. We presiet conflict-based statistics
which is a learning technique that helps the sdlwerscape a local optimum. We
also describe how the presented conflict-basedsstat can be used inside a
traditional local-search algorithm. Next, we wiltegent how to dynamically
maintain arc consistency during the search usimgaeations. We also present
how to change an incomplete iterative forward deadgorithm into a complete
systematic search algorithm called dynamic backinac

5.1. Conflict-based Statistics

Value ordering heuristics play an important role solving various
problems. They allow choosing suitable values fatipular variables to compute
a complete and/or optimal solution. Problem-specifieuristics are usually
applied because problem-independent heuristiccanmgutationally expensive.
Here we propose an efficient problem-independeprageh to value selection
whose aim is to recognize good and poor values.

We have applied this so called conflict-based siat (CBS) in our
iterative forward search algorithm [MBR04, MR04, B65]. This combination
helped us to solve a large-scale timetabling probd¢ Purdue University. Here
we describe a general scheme for the conflict-batsdtics and apply it to local
search and iterative forward search methods.

51.1. Related Works

Methods similar to CBS were successfully applieéanlier works [DF02,
JLO2]. In the weighting-conflict heuristics presestin [JLO2], a weight is
associated with each decision (assignment of aevdlu a variable). It
characterizes the number of times that the declsi@nappeared in any conflict. It
also takes the arity of a conflict into accountcliEdime a conflict is found, the
weight of its decision constraints (i.e., assignteemhich are in the conflict) is
increased by /t wherer is the arity of the conflicting constraint. Theseights
are used for selections of decisions which areteelgahen a dead-end is reached.

In our approach, the conflict-based statistics woak an advice in the
value selection criterion. It helps to avoid repedi, unsuitable assignments of the
same value to a variable. In particular, conflcasised by this assignment in the
past are memorized. In contrast to the weightingflmd heuristics proposed in
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[JLOZ2], conflict assignments are memorized togethith the assignment which
caused them. Also, we propose our statistics tontienited, to prevent short-term
as well as long-term cycles.

5.1.2. General Conflict-based Statistics

The main idea behind conflict-based statistice imemorize conflicts and
discourage their future repetition. For instancéew a value is assigned to a
variable, conflicts with some other assigned vdesimnay occur. This means that
there are one or more constraints which prohilatapplied assignment together
with the existing assignments. A counter, trackiogv many times such an event
occurred in the past, is stored in memory. If aialde is selected for an
assignment (or reassignment) again, the storedniaioon about repetition of
past conflicts is taken into account.

Conflict-based statistics is a data structure thamorizes hard conflicts
which have occurred during the search together witkir frequency and
assignments which caused them.

Definition 5.1 (CBS).Conflict-based statistics is an array
CBS[Va=Va— = V= V] = Cap

which means that the assignment %/ v, caused g times a hard
conflict with the assignmentp\# v, in the past.

Note that it does not imply that these assignméhts v, and \, = v,
cannot be used together in case of non-binary @nt. The proposed conflict-
based statistics does not actually work with amyst@ints. It only memorizes the
conflict assignments together with the assignmdmtivcaused them. This helps
us capture similar cases as well, e.g., when thpieabassignment violates a
constraint different from the past ones, but som#e created conflicts are the
same. It also reduces the total space allocatédebgtatistics.

Also note that we do not exactly express what “betfifmean in general,
since it can vary on the algorithm where the cotihased statistics is to be used.
For instance, in the iterative forward search, bctivig assignments (i.e.,
assignments that are incompatible with the newgassent, see chapter 4.2.5) can
be used.

The conflict-based statistics can be implemented dssh table. Such
structure is empty in the beginning. During compatg the structure contains
only non-zero counters. A counter is maintainedafduple [A =a — - B =Db] in
case that the value was selected for the variable A and this assighnmen a
caused a conflict with an existing assignment B An example of this structure

A=za — 3x-B=h, 4x-B=c, 2x-C=a 120x-D=a

expresses that variable B conflicts three timedh it assignmenb and four
times with its assignmer, variable C conflicts two times with its assignran
and D conflicts 120 times with its assignmantll because of later selections of
valuea for variable A. This structure can be used invhkie selection heuristics
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to evaluate conflicts with the assigned variablesr example, if there is a
variable A selected and its valaeis in conflict with an assignment B I we
know that a similar problem has already occurretihi®s in the past, and the
conflict A =a can be weighted with the number 3.

5.1.3. Conflict-based Statisticsin Iterative Forward
Search

The IFS algorithm attempts to move from one (pBrieasible solution to
another via repetitive assignment of a selectedevd a selected variable. During
each step, a variable and a value from its dom@&rclosen for assignment. This
may cause some hard conflicts with already assigaedbles. Such conflicting
assignments are removed from the solution and ltleepme unassigned. Finally,
the selected value is assigned to the selectedblari

Conflict-based statistics memorizes these unassgtsitogether with the
assignment which caused them. Let us suppose thaluav, is selected for a
variable . To enforce feasibility of the new assignment, soprevious
assignments V= vi, Vo= V,, ... V;, =V, need to be unassigned (assignments;V
Vv, .Vilvy are returned by the functiooonflicty. As a consequence we
increment the counters

CBS[Vo=Vo— = V1=Vq],
CBS[Vo=Vo— = V2=V, ,

Definition 5.2 (CBS for IFS).Let ® = (V,D,C) be a CSPg be
a current feasible (partial) assignment @f AV and allDa
selected variable and value respectively in theetriteration.
The counters CBS[A a— - B =b] where

B/b [0 conflict{o, A, a)
are incremented.

The conflict-based statistics is being used invhlkeie selection criterion.
A trivial min-conflict value selection criterion lgets a value with the minimal
number of conflicts with the existing assignmeritkis heuristics can be easily
adapted to a weighted min-conflict criterion (seguFe 5.1).

Here the value with the smallest sum of the nunatb@onflicts multiplied
by their frequencies is selected. Stated in anotfast, the weighted min-conflict
approach helps to select a certain value that niglise more conflicts than
another value. The point is that these conflicesraot so frequent, and therefore
they have a lower weighted sum. Our hope is thatit considerably help the
search to get out of a local minimum.
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procedur e selectValue (o, A)
bestValues = {}; bestNrConfs = 0;

for each aldDy do

nrConfs = 0;
for each B/b O conflicts (o,A a) do
nrConfs += 1+CBS[A=a -> B #b];
i f (bestValues i s enpty) or (bestNrConfs > nrConfs) t hen
bestValues = {a}; bestNrConfs = nrConfs;
el se i f (bestNrConfs == nrConfs) t hen
bestValues = bestValues 0 {a};
end if
end for

a = randomly selected a value from bestValues;

for each B/b 0O conflicts (o,A a) do
CBS[A=a->B #b]++;

end for

return a;
end procedure

Fig. 5.1.Weighted min-conflict value selection criterion.

Space Complexity

Let us study the space complexity of the data girameeded for conflict-
based statistics. We will consider two differentiables \4 and \4, linked by
a constraint prohibiting concurrent assignmenis=W, and \{, = w. In the worst
case, a counter exists for each pair of such pessifsignments = v, and
Vp =V, However, each increment of a counter in the sttesi means an un-
assignment of an assigned variable. Therefore eaahter CBS[¥=V,a— - Vp=
Vp] = n in the statistics means that there was aig@asent \4, = v, which was
unassigned n times whegwas assigned toV

Lemma5.1 (space complexity of CBS in IFS)he total sum of al
counters in the CBS plus the current number ofgassi variables
equals to the number of processed iterations plasnumber of
assigned variables in the initial assignment.

2{CBS(Va=Va—Ve=Wy) | Va, VOV, V41DV, Ve ODVR}+ |o] =iter + [a

wherea is the initial assignment (the one IFS startednater is the
number of iterations processed so far anid the current assignment
(i.e., the assignment afteer-th iteration).

Proof: The Lemma 5.2 is a direct consequence of thetfadt there is
exactly one assignment done in every iteration.stdmere wered|| variables
assigned before IFS started aitdr assignments made so far. Aftager-th
iteration, there areo| variables assigned. So, there wem¢ 1 iter - |o]

-43 -



unasignments in the paser iterations and this is also the number of increment
in CBS mades

Therefore, if the above described hash table (wh&crempty at the
beginning and does not contain empty counters$esl uthe total number of all its
counters will never exceed the number of iteratjpreessed so far.

Extensions
We plan to study the following extensions of thaftiot-based statistics:

- If a variable is selected for an assignment, thevabpresented
structure can also tell how many potential cordliatvalue can cause
in the future. In the above example, we alreadywktiwat four times a
later assignment of A a caused that value was unassigned from B.
We can try to minimize such future conflicts byessing a different
value of the variable B while A is still unbound.

« The memorized conflicts can be aged according t@ faw they have
occurred in the past. For example, a conflict whadturred 1000
iterations ago can have half the weight of a confivhich occurred
during the last iteration or it can be forgottemiht

Furthermore, the presented conflict-based statistem be used not only
inside the solving mechanism. The constructed ,jcaplons* together with the
information about frequency of their occurrences ba easily accessed by users
or by some add-on deductive engine to identify msistencies and/or hard parts
of the input problem. The user can then modifyitipat requirements in order to
eliminate problems found and let the solver comithe search with this modified
input problem. Actually, this feature allows diseoy of all inconsistent data
inputs during solution of the Purdue Universityeiabling problem.

5.1.4. Conflict-based Statisticsin Local Search

Local search algorithms perform an incomplete ergtion of the search
space by repairing an infeasible complete assighmen each iteration step, a
new assignmeny is selected from the neighbouring assignmentsg) ¢ the
current assignment A neighbourhood of an assignment can be definedany
different ways, for instance, a neighbour assigrinean be an assignment where
exactly one variable is assigned differently. Thvay, a single variable is
reassigned in each move.

From the conflict-based statistics’ point of vieme would like to prohibit
a move (a selection of a neighbouring assignmehtytwrepetitively causes the
same inconsistency. An inconsistency can be idedtiby a variable whose
assignment becomes inconsistent with assignmergsroé other variables, or a
constraint which becomes violated by the move.

-44 -



Definition 5.3 (neighbouring assignmentsjet ® = (V,D,C) be a
CSP,y be a complete (but potentially infeasible) assigntof ©.
A set of neighbouring assignments is denoted by N(W, where
WP is the set of all complete assignmekts{o | 0 = {vi/a, ...,
vi/an} & Oi g0Dv; & |o]=|V]| }.
Usually, every assignmentIN(y) has to fulfil some property
e.g., there is a metrics M (e.g., a number of teifidy assigned
variables) and a threshatgdstating

OAON(Y) M(Ay) <T.

Simply, in each iteration step, one or more vagaldre reassigned. These
reassignments can cause that one or more unchaumgedbles become
inconsistent with the new assignment. This meaasttiere is a constraint which
was satisfied by the previous assignment andvibigted in the new assignment.
The reason is that it prohibits concurrent valugiggsnent of some unchanged
variable(s) and some reassigned variable(s). Thlicbased statistics can
memorize this problem (i.e., unchanged variableoive inconsistent) together
with its reason (i.e., reassigned variables). Meeeowe can use the same
structure of counters CBS[¥ v,— = V= V] = Cap @s above.

More precisely, we have reassigned variables\¥, ... V, that caused
unchanged variables MWW, ... W, to become inconsistent. Let us supposehat
is a new value assigned tq &dw; is a value assigned to;Wf a constraint
between Vand W becomes violated, the counter CBSfpW;, — = W, = wj] is
incremented. Note also that such constraint migigrate over more than two
variables and some of its variables might alreadyirizonsistent in the prior
iteration because of another constraint.

Definition 5.4 (reassigned variables).et® = (V,D,C) be a CSRy, 8
be complete (infeasible) assignments wh@@eN(a), newly
assigned variables are

diff,(a,B)={v | vOIV & v/ala & v/b[ & azb}

Definition 5.5 (newly violated assignmentd)et ® = (V,D,C) be &
CSP,qa, B complete (infeasible) assignments whiféN(a) and
vl diffy(a,B). A set of newly violated assignments is
violy(a,B,v)={w/blan B | CcOC v,wddon(c) & c(a) & -c(B)}

Definition 5.6 (variable-based CBS for L9y each iteration step (le
BON(a) is selected), the counters CBS[a= - w =b] where

vO diffy(a,B) & v/al B & w/b0d viol,(a,B3,v)
are incremented.

~—+

For example, there might be valugsandv, assigned to variables;\and
V, respectively. As a consequence two constraintsrhegnconsistent:

« the constraintC; prohibits the assignment;\# v; with an existing
assignments W= w; and W = ws,
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« the constraintC, prohibits both assignments; \& vi, V2 = v, with
W3 =ws and W, =w,, but W, = w, is already inconsistent because of
some other constrais.

Then, the following counters are incremented:

. CBS[\/]_: vVi— W= W]_] and CBSN: Vi— = W,o= W2] wrt. C1
. CBS[V;L: vi— 7 W= W3] and CBS[\é: Vo— = W= W3] wrt. C,

The conflict-based statistics is used in the mosiecsion criterion. For
example, if there is a reassignment=\W, contained in the move, and it causes an
unchanged assignment,\= v, to become inconsistent, such move can be
weighted by the counter CBS{¥ va— = V= W.

As for space complexity of the CBS structure, ag#irere could be a
counter for each pair of possible assignments V, and \, = v, where \4 # Vp
and there is a constraint between variablesavd \{, which can prohibit
concurrent assignments, ¥ v, and \, = v,. Unfortunately, we cannot precisely
limit the speed how the above structure will graawee did for IFS, but since the
number of conflicts should decrease during theckgdhe structure should grow
slowly as well.

In some cases, it might be easier to identify aomsistency not as
a variable whose assignment becomes inconsistenht abweonstraint which
becomes violated by the move. For instance, ifetlae only binary constraints in
the problem, it is easier to check that both vadesare assigned and compatible
than to check whether there is a constraint coedett a value which is not
consistent. On the other hand, sometimes it iseeaénd even more
straightforward) to check the consistency of vddab For instance, we might
rather check if two lectures which take place m$Ame room are not overlapping
than to check that the room constraint is violatéihte that for Random
Placement Problem there is only one constraint, ibigs connecting all the
variables (see Chapter 6.2).

The above described conflict based statistics ciso &e used for
memorizing the reason, why a constraint becomemsgistent. Now, it is an array

CBS[Va=Va— =Gy ],

where C, is the constraint which becomes violated becausehef recent
assignment Y= v,

Definition 5.7 (newly violated constraints).et ® = (V,D,C) be a
CSP,a, B be complete (infeasible) assignments whigréN(a)
and V1 diff,(a,). A set of newly violated constraints for v is

violg(a,B,v)={cC | viddon(c) & c(a) & = c(B)}

Definition 5.8 (constraint-based CBS for LSn each iteration step

(let BON(a) is selected), the counters CBS[@a= - c] where
v diffy(a,B) & v/allp & cl viol(a,B,v)
are incremented.
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In the example above, if the constrai@tsandC, become inconsistent by
the move where valueg andv, are assigned to variables &nd \4 (note thatCs
is already inconsistent because of the assignment W, andsome others), the
following counters are incremented:

+  CBS|[Vi1=v;— - (C4] sinceC, prohibitsV; = v to be assigned together
with the existing assignments;\W w; and W = ws.

+ CBS[Vi=v;— = C;] and CBS[\s = v, — = C;] sinceC; prohibitsboth
assignment¥; = vy, Vo = vowith W3 =ws and W, = w.

5.2. Maintaining Arc Consistency

Because the presented IFS algorithm works with iglarteasible
assignments, it can be easily extended to mairdegnconsistency during the
search. This can be done by using well known dyoaarc consistency
algorithms (e.g., by AC|DC algorithm published MB94] or DnAC6 published
in [Deb96]) which are widely used in Dynamic CSF3(3].

Moreover, since only the constraints describinggassents (constraint
Variable = value) can be added and removed duhagéarch, approaches based
on explanations [JDB0O0, Jus03] can be used as imethis section, we present
how these explanations, which are traditionally duse systematic search
algorithms, can be used in our iterative forwardrele approach in order to
maintain arc consistency.

5.2.1. Related Works

Arc consistency (AC) technique removes values fr@mables’ domains
that are inconsistent with constraints. In paracuthe pair of variables (W;) is
arc consistent if and only if for every valuen the current domain of ;Mvhich
satisfies the constraints on Were is some valugin the domain of Ysuch that
Vi=xand Vf =y is permitted by the constraint betweenavid \{ (see Definition
2.6).

There are several arc consistency algorithms staftom AC-1 [Mac77]
and concluding somewhere at AC-7 [BF99]. These rdlgns are based on
repeated revisions of arcs till a consistent stateeached or some domain
becomes empty. The most popular among them are AR&77], AC-3.1
[Z2Y01], AC2001 [BRO1], AC-4 [MH86] and AC-6 [Bes94The AC-3 algorithm
performs re-revisions only for those arcs that@ossibly affected by a previous
revision. It does not require any special datacstines as opposed to AC-4 or
AC-6 that work with individual pairs of values tbneinate potential inefficiency
of checking pairs of values again and again.

Arc consistency algorithms can be easily adaptedadd constraints
incrementally. However, they are ineffective taaseh constraint because they are
not able to determine the set of values that mesebtored in the domain. So, to
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remove a constraint with these algorithms we haveset the domains and to add
all the remaining constraints on the initial CSP.

In AC|DC algorithm published in [NB94], which is d&d on AC-3, a
constraint retraction is done in three steps: tinst fone proposes a set of
restorable values for the variables connected byd#ieted constraint. Then, the
consequences of these potential additions are gabga throughout the constraint
network. Finally, arc consistency is applied staytirom the variables whose
domain has been enlarged, working only on the ralte values to filter out the
ones that are inconsistent with respect to thexeel@roblem.

In the arc-consistency algorithm DnAC-4 published [Bes91], a
justification for each deleted value is stored. Thiyorithm uses these
justifications to determine the set of values tieate been removed because of the
relaxed constraint and so can process relaxatiocrementally. DnAC-4 is an
adaptation of AC-4 algorithm. There is also an atgon DnAC-6 [Deb96] which
is based on AC-6 algorithm.

The explanation-based approach [JDB0O0, JusO3]ratsmorizes why the
value was removed from the variable’s domain:

Definition 5.9 (explanation) An explanation,
Vi;'fVi «— (V1:V1&V2 =\Vs... &Vj :VJ)
describes that the valwecannot be assigned to the variable| V
since it is in a conflict with the existing assigamts \ = vi,
Vo=Vo, ... VJ =V

This means that there is no complete feasible as®gt containing assignments
Vi=vy, Vo =V, ... V; = v together with the assignment ¥ v; (these equalities
form a no-good set [Jus03]).

So, for instance, if the valug is no longer assigned to the variablg We
inequality M # vi needs to be revised. If there is no other reasonti valuev;
cannot be assigned to the variable Wis returned to the domain of the variable
V. Otherwise, there is a new explanation attachedeanequality V# vi.

52.2. IFSwith MAC

During the arc consistency maintenance, when aevaliudeleted from a
variable’s domain, the reason (forming an explamgtican be computed and
attached to the deleted value. Once a variable\(gsayith the assigned valug)
is unassigned during the search, all deleted vallnsh contain a pair ¥= v in
their explanations need to be revised. Either suadhe can be still inconsistent
with the current (partial) assignment (a differemplanation is attached to it in
this case) or it can be returned back to its vé&laldomain. Arc consistency is
maintained after each iteration step, i.e., thectetl assignment is propagated
into the not yet assigned variables. When a value assigned to a variable,V
an explanation Y+ vy < Vy =V is attached to all values of the variable Y,
different fromv.
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In the case of forward checking (only constrainténg from assigned
variables to unassigned variables are revised) pating explanations is rather
easy. A valuey is deleted from the domain of the variablg anly if there is
a constraint which prohibits the assignment=W% because of the existing
assignments (e.g.,y\= v, ... V; = V;). An explanation for the deletion of this
valuevy is then { # vy — (Vy=w & ... V; =V;), where \f = v, & ... V, = v, are
assignments contained in the prohibiting constrdimtcase of arc consistency,
a valuevy is deleted from the domain of the variablg i¥/there is a constraint
which does not permit the assignment=\Wy with other possible assignments of
the other variables in the constraint. This meaas there is no support value (or
combination of values) for the valug of the variable Y in the constraint. An
explanation is then a union of explanations ofpalsible support values for the
assignment Y= vy of this constraint which were deleted. The reasdhat if one
of these support values is returned to its varialdemain, this valug, may be
returned as well (i.e., the reason for its delehas vanished, a new reason needs
to be computed).

Note that in our implementation, we consider alstoaints to be binary.
Arc consistency is maintained over a non-binaryst@mnt, only when such
a constraint implements an optional methgf€onsistentstating whether the
constraint is satisfied with an assignment of twasovariables, i.e.,

isConsister(t,A,a,B,b) = c(®{A/a,B/b}),

where®=(V,D,C) is a CSP,[AC, A,Bl0dom(c), A#B, al1Da, b[IDg. For instance,
in case of a resource constraint, metls@onsistentchecks whether the given
two activities consuming the same resource arelaweing in time or not. Then,
a valuea is removed from the domain of variable A if thése constraint c and a
variable Bldomnqc), and there is nblIDg so thatisConsister(t,A,a,B,b) is true
(there are no support values in the domain of bé&i8). An explanation for Aa

is a union of explanations of all valubsthat were deleted from £for which
isConsister(t,A,a,B,b") holds true.

pr ocedur e ifs-mac(V,D,C)
o= p={} /I current and best assignments
/I enforce arc consistency of the input problem
if (makeAQ) is false ) return o;
whi | e canContinue (o) do
A= selectVariable (o)
a= selectValue (g, A);
for each B/b 0O conflicts (g, A a) do unassign-mac ( o,B,b);
assign-mac (o, Aa);
if better (o, B) then p= g
end while
return @;
end procedure

Fig. 5.2.The iterative forward search algorithm with MAC
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As for the arc consistency maintenance inside IkE®rithm, the IFS
algorithm scheme remains as it is described irptbgious chapter, we only need
to enforce arc consistency of the initial assignimend to maintain the arc
consistency during the search. The maintenancecafansistency is done during
unassignment of the conflicting assignments (retdrby functionconflicty and
during assignment of the selected value to thetalevariable (see Figure 5.2).

An explanation YV # vy «— (Vy =V, & ... V; = V,) is denoted by the table
EXP[V,#v] that contains a set of assignments explaining#use of the removal
of valuevy from the domain of the variable,Vi.e., {Vy/v, ... Vi/v;}. If the value
Vy is in the domain of variable .V EXP[V,#v,] is null. Note that we do not
explicitly change the domains of variables during search, but a current domain
of a variable A is defined by the setl{Ba | EXP[A#a] is null}, where Dy is the
initial domain of the variable A (after the problésnmade arc consistent).

An example implementation of the arc consistencyinteaance is
indicated in the Figure 5.3. It is an extensiontled IFS algorithm that only
enforces assignment feasibility (see Definition)4dRiring the search. Other
possibility is to put all this logic intaonflicts function which returns the
assignments that needs to be unassigned in oraeake the problem consistent
respecting some given consistency technifjsee Definition 4.4).

Procedureassign-mags, A, a) enforces arc consistency of the new
assignment [0 {A/a}. If we allow an inconsistent valua of variable A to be
selected by the value selection heurist@ss(not in the current domain of the
variable A, i.e., there is an explanation attacteed+a), the valuea needs to be
returned into the domain of variable A first. Thean be done by repeated
selection and unassignment of one of the assigramfenin the explanation of
A#a, until the valuaa is returned to the domain of variable A.

Procedureunassign-ma@, A, a) “undos” the propagations made by the
assignmens [ {A/a} that are consistent with the assignmenit means that all
explanations that contain assignment A/a need toebised. This is done via
recomputation of all of these explanations followéy arc consistency
maintenance over those which are not consistertt wieé assignmens (the
consistent values are returned into their varialleshains).

Note that the sets of current support values (netirby function
currentSupportsdo not need to be computed over and over, byt ¢ha be pre-
computed at the beginning of the search and thentamaed during the search,
like it is usually done in AC-4 algorithm [MH86].
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procedure assign-mac (o, A, a)
whi | e (EXP[A #a] is not null ) do

sel ect B/b fromEXP[A #a];
unassign-mac (o, B, b);

end if

/Iperform the assignment

o= o O{A/a};

/ladapt explanations of the given variable

queue = {};

for each @ [ODa so that a+#a and EXP[A #a] is null do
EXPL(A#a") = {Ala};

queue += Ala’;

end for

propagate (queue);
end procedure

procedur e unassign-mac (o, B, b)
/lperform the unassignment
o= o-{Blb}
/lremove explanations that contain B/b
back = {};
for all Ala where B/b O EXP[A#a] do
EXP[A #a]= null ;

back += A/a;
end for
/land revise values that have an explanation remo ved
queue = {};
for each Ala 0Oback do
/lif variable A is assigned to some other value a'
/I attach an explanation A +#a <- {A=a’}
/I this is needed because variables can be una ssigned in a

/I different order they were assigned
if (8 0ODya+a &Ala [UOo) then
EXP[A +#a] = {Ala’};
gqueue += Ala;
el se
revise (A,a,queue);
end if
end for
/lenforce arc consistency of the new solution
propagate (queue);
end procedure

/all values of B supporting assignment A/a in cons traint c
procedur e supports (c, A, a, B)
sup = {};
for eachb ODg do
i f isConsistent (c, A a, B, b) then sup += b;
end for

return sup;
end procedure

(continues on the next page)

-51 -



/all values from the current domain of B supporting assignment A/a
//in constraint ¢
procedur e currentSupports (c, A, a, B)

sup ={}; /lgo only over variables of the current domain of B
for eachb ODg so that EXP[B #b] is null do

i f isConsistent (c, A, a, B, b) then sup += b;
end for
return sup;

end procedure

/lexplanation of A #a when there is no support value from the
/lcurrent domain of variable B in constraint ¢
pr ocedur e computeExplanation  (c, A, a, B)

expl = {};

for each b O supports (c, A, a, B) do
expl = expl 0 EXP[B #b];

end for

return expl;
end procedure

[Irevise consistency of the assignment A/a, add i t into the queue
/lwhen it is not consistent (i.e., there is a con straint c and a
[Ivariable B so that there are no current support from B that

//satisfies constraint ¢ with the assignment A/a
procedure revise (A, a, queue)
for each constraint csothatA Odom(c) and each B Odom(c) do
i f (currentSupports (c,A,a,B) is enpty) then
EXP[A+#a] = computeExplanation  (c, A, a, B);
gqueue += Ala;
end if
end for
end procedure

/lpropagate the assignments that are no longer cons istent —
/li.e., check whether there are some other values that are
/Ino longer supported (which were initially suppo rted by the

/lassignments in the queue)
pr ocedur e propagate (queue)
whil e (Qqueue not enpty) do
Ala<- renpove and return first el ement from queue;
for each constraint csothat A Odom(c) and each B Odom(c) do
for each b O currentSupports (c,A,a,B) do

i f (currentSupports (c,B,b,A) is enpty) then
EXP[B#b] = computeExplanation  (c, B, b, A);
queue += B/b;
end if
end for
end for
end while

end procedure

Fig. 5.3.IFS with MAC — changes in assignd_unassigmprocedures.

In traditional dynamic arc consistency algorithragy(, AC|DC, DnAC, ...)
the value selection function chooses a value omlgray the values in the current
domain of the variable, i.e., among the values thwa not pruned by arc
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consistency. Using the presented explanations-bagpgdoach gives us more
flexibility since we know the cause of deletionafleleted value (each deletion
has an explanation attached). For instance, ivahes selection function, we can
select a value not only from the current domaithefselected variable but also a
value which was previously “deleted” via MAC. lideleted variable is selected,
it can become feasible by repeatedly unassigningelacted value from its
explanation until the value is returned to the ctel@ variable's domain.

For instance, in the following chapter, we compiave possibilities how
to treat a case when there is a variable with apteriomain (i.e., all its values
were deleted via MAC) detected. In the first catenpted IFS MAC), while there
is a variable with an empty domain, the algorithetests and unassigns a variable
that is present in explanations of values of thealde with an empty domain
(a probability of a selection of a variable corasgs with the frequency of
presence of the variable in the explanations otiamlof the empty domain
variable). In the second case (denoted IFS MACHh¢ algorithm continues
extending the solution even when there is a vagialith an empty domain. If the

selected variable does not contain any value irctimeent domain, one of
its removed values is selected (via min-conflidueaselection) and returned into
the selected variable’s domain by repeatedly ugasgy a randomly selected
value from its explanation. Note that the secondaw is more suited for a
problem where we want to compute the largest féasiiution (in the number of
assigned variables) in case of an over-constrgnaolem.

5.3. IFSasDynamic Backtracking with MAC

In this section, we describe how the presentedtiter forward search
framework can be used to mimic dynamic backtrackidB) [Gin93] search with
the arc consistency maintenance (MAC) [Bes91]. Isense, the presented IFS
algorithm with MAC can be seen as an extension & With MAC, e.g.,
described in [JDBO0O], towards the local search thasethods.

5.3.1. Related Works

Dynamic backtracking algorithm is described in Fegb.4 (taken over
from [JDBO0O]). Procedure dipierforms the main loop which tries to assign value
to variables until a complete consistent assignnina® been found. Procedure
assignAndCheckletermines whether the new partial solution (idelg the new
assignment Ad) is consistent. If not, this procedure returnsogaod (a set of
assignments responsible for the dead-end), exptpithe failure. In order to
restore a coherent state of computation, the proeglaandleContradictiojumps
to another consistent partial assignment. Domaints explanations are restored
by the procedure updateDomains
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procedure dbt (V,D, C)
o={} /lcurrent solution
while (o is not conplete) do
Ala= chooseAssignment ( o);
E = assignAndCheck (o, A, a);
if (E is not success ) then handleContradiction (E, o)
end while
return o;
end procedure

procedur e assignAndCheck (o, A, a)

for each a' 0D, so that a#a do
EXP[A#a’] = {Ala};

end for
o= o O{Aa};D ,={a}
¢ = checkConstraints (o,A);

if (c is success ) then return success ;
return{A/la} O{B/b|B Odom(c) & B/b  Oc};
end procedure

pr ocedur e checkConstraints (o,A)
for each constraint c so that AOdom(c) do
if (c not satisfied with o) then return c;
end for
return success;
end procedure

pr ocedur e handleContradiction (E, o)
if (E is enpty) then return fail ;
Ala <- most recent assignment of E;
updateDomains  ({B/b | Ala O EXP[B #b]});
o= o—-{A/a};D Aa=D Ar—{a}
EXP[A #a] = E —{A/a};
if (Dais empty) then

E’ = union of EXP[A #a] for all values a;
handleContradiction (E', o)
end if

end procedure

procedur e updateDomains (back)
for eachB/b [Oback do
EXP[B #b]= null ;
D B= D B 0O {B/b},
end for

end procedure

Fig. 5.4.Dynamic Backtracking

Procedure_checkConstrainteecks whether the constraints are consistent
with the new assignment. If not, this procedureimret such a failing constraint.
From that constraint, assignAndChemkmputes a nogood. This nogood contains
only the assignments involved in the failure.

Procedure_handleContradictias the contradiction handling mechanism.
The assignment to be undone is determined tmwktracking(or more exactly
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backjumping is achieved by removing irrelevant nogoods whgperformed by
the updateDomaingrocedure.

In fact, dynamic backtracking does not perform temtktracks. When a
dead-end occurs, it reconsiders only the most teassignment that caused the
contradiction. Especially, all the assignments ttiak not cause the dead-end
remain unchanged. This is why dynamic backtrackiag an additive behaviour
on independent sub-problems.

In [JDBOO0], constraint propagation is integratetbithe algorithm scheme
above. First, when a failure occurs, computation nojoods (the variable
assignments in the failing constraint) is extendeffiects of propagation (value
removals) are taken into account: eliminating emateons produced by the
filtering algorithm need to be kept. Second, wheraasignment is being undone,
putting back in the domains values with irrelevarplanations is not sufficient
since there may exist another relevant explandtiorthe deleted value. Value
restoration needs to be confirmed by the propagatigorithm. This is similar to
what is done for maintaining arc-consistency inaiyic CSPs.

5.3.2. IFSasDynamic Backtracking with MAC

Dynamic backtracking with MAC can come out of tHeoee presented
IFS with MAC via the following modifications and/ogstrictions. The purpose of
this chapter is to show that the incomplete (Ie=rch based) iterative forward
search algorithm can be turned into a completek{backing based). For more
details about dynamic backtracking algorithm witA®see [JDBO0O].

« Variable selection function__selectVariablalways returns an
unassigned variable. If there are one or more blEsawith empty
domains, one of them is returned in the variablecten function.

+ Value selection function selectValadways returns a value from the
selected variable's domain (i.e., not-deleted valfi¢here is no such
value, it returnsll.

+ When all the variables are assigned, the solveniteites and returns
the found solution (termination condition functie@anContinug In
case of branch&bound technique the existence anaptete solution
should lower the bound so that a conflict arisesictv leads to some
unassignments.

+ If the selected value sull (which means that the selected variable has
an empty domain), a union of all assignments wipichhibits all the
values of the selected variable (a union of assegrismof all values’
explanations) is computed. The last assignment nsadelected (each
variable can memorize an iteration number, whemait assigned for
the last time). This assignment has to be unasdjga## other
assignments from the computed union are taken axlanation for
this unassignment. If the computed explanation msptg (e.g.,
Vx#Vx«<— 0), the value can be permanently removed from its
variable's domain because it can never be a parcofnplete solution.
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If the computed union is empty, there is no congpkailution and the
algorithm returns fail (see Figure 5.5 for details)

pr ocedur e ifs-dbt(V,D,C)
o= p={} /I current and best assignments
/I enforce arc consistency of the input problem
if (makeAQ) is false ) return o;
whi | e canContinue-dbt (o) do
A= selectVariable-dbt (o)
a= selectValue-dbt (o, A);
if (@ is nul )
i f ( backtrack (o,A) is false ) return fall

end if
el se
for each B/b 0O conflicts (0o, A a) do unassign-mac (o,B,b);
assign-mac (o, Aa);
if better (o, B) then p= o
end if
end while
return g;

end procedure

procedur e backtrack (o, A)
E={
for a in allvalues of variable A do
E=E OEXP[A #a];
end for
if (E is enpty) return false
B/b <- nmost recent assignment of E;
unassign-mac ( 0,B,b);
EXP[B,b] = E — {B/b};
return true ;
end procedure

Fig. 5.5.1FS as dynamic backtracking with MAC.

Like in the above presented IFS MAC algorithm, amonsistency
maintenance and its undo are called automaticdtlyr @ach assignment and
unassignment, respectively.

5.4. Summary

In this chapter, we presented various extensionthefiterative forward
search algorithm which we have described in chagtehe conflict-based
statistics is the most important one since it hetlps to be able to find high
quality complete solutions for both the initialaell as the minimal perturbation
problem of the large lecture timetabling problemPatrdue University [MRO04,

MRBO5].
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6. Experimental Results

The iterative forward search algorithm togetherhwatll the presented
extensions has been implemented in Java. It cantageneral implementation of
the iterative search algorithm. The general sobparates over abstract variables
and values with a selection of available extensidyasic general heuristics,
solution comparators, and termination functionsmby be customized to fit a
particular problem (e.g., as it has been extended RHurdue University
timetabling) by implementing variable and valueiniéibns, adding hard and soft
constraints, and extending the parametric functioihghe algorithm. For more
details about iterative forward search frameworl appendixes A and B or the
API (javadoc) documentation on the attached CD-RAMe results presented
here were computed on 3GHz Pentium 4 PC runningd@virs XP professional,
with 1 GB RAM and JDK 1.5.0.

The presented IFS algorithm performs an incompéeqeloration of the
solution space with no guarantee of finding a catgland optimal) solution
satisfying all the constraints. The purpose of tth&pter is to experimentally
verify the following properties:

« IFS is applicable on various constraint satisfactamd optimisation
problems.

« IFS is competitive with other (mainly local-search)gorithms.
Moreover, it performs very well on optimisation plems, especially
when it is used together with the presented cdrifiised statistics.

« The conflict-based statistics can be successfudlgduwithin a local
search algorithm as it is described in the previhapter.

+ |IFS can be used on over-constrained problems, wtiese is no
complete solution.

« IFS is applicable on both initial (standard CSP)wasl as minimal
perturbation problem. Moreover, we can use the salg@rithm, only
with slight modifications in the variable/value setion heuristics in
the whole solution production cycle.

« IFS can be used for solving real-life large scatendtabling)
optimisation problems.

Variationsof |FS

Since the iterative forward search as it is desdrilm chapter 4 is more
like a framework than an exact definition of a $&nglgorithm (it needs to be
parameterised by the selection of the variablegsadalection, termination and
heuristics), we study several variants of this atm differentiated by the choice
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of the value selection heuristic and the extensidescribed in chapter 5. The
compared algorithms are:

+ IFS RW(prw) ... min-conflict selection of values witp,, random
walk. This means, that with the given probabilfy,, a value is
selected randomly from all values of the selectetiable's domain.

« IFSTY ) ... tabu search, whetg is the length of tabu list which is
used to avoid cycling. Repeated selection of thmespair (variable,
value) is prohibited for the given number of suhsay iterations.

+ IFSCBS ... min-conflict value selection where conflict® aveighted
according to the conflict-based statistics (as idlesd in Chapter 5.1)

« |IFS MAC ... arc-consistency maintenance; if there is aabée with
an empty domain, a variable which caused a renmafvahe or more of
values is selected and unassigned. This is dorteatca valuevy of
such a variable yYwith an empty domain is selected randomly and
a randomly selected assignment from the explana%ign# vy is
unassigned.

« |IFS MAC+ ... arc-consistency maintenance; the algorithnticoas
extending the solution even when there is a vagiatith an empty
domain. If the selected variable does not contaynvalue which was
not removed from its domain via MAC, one of its warmad values is
selected (via min-conflict value selection).

- DBT MAC ... dynamic backtracking algorithm with arc coteiey
maintenance (as described in Chapter 5.3)

- DBT FC ... dynamic backtracking algorithm with forwardecking

For all these variants, an unassigned variableslisced randomly (see
Figure 6.1) and the value selection is based onrawminilict strategy (see Figure
6.2). This means that a value is randomly seleectewng the values whose
assignment will cause the minimal number of cotdliavith the existing
assignments. The search is terminated when a ctergnéution is found or when
the given time limit is reached. As for the solatmomparator, a solution with the
highest number of assigned variables is alwaystszle

procedur e selectVariable ( o)
I/ current (partial but feasible) assignment is the parameter
unassigned = all variables that are not assigned in  o;

r et urn randomly selected variable from unassigned;
end procedure

Fig. 6.1.Variable selection criterion (IFS CBS, IFS TABUSIMCRW)

Because we attempt to solve large scale problenantamning arc
consistency (algorithms IFS MAC and DBT MAC) is edson AC3 algorithm
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(e.g., see [Tsa93]). For instance, in the Purdueddsity timetabling problem we
have about 800 variables (there is a variable frhecourse) with the total
number of more than 200,000 values (there is aevialueach location of a course
in the timetable, including a selection of time(spom and instructor).
Furthermore, nearly every two variables are relatgdsome constraint, e.g.,
typically there is at least one room they can hah. Due to the memory reasons,
this prohibits any consistency method which is dam® memorizing supports for
each pair of values or for each pair of value aauigble.

procedure selectValue (o, A)

/I current (partial but feasible) assignment and th e selected
I/l variable are the parameters
i f (random walk) begin
i f (random()<p ) returnrandomly selected value from D A
end

bestNrConfs = 0; bestValues = {};

for each alD, do
n = conflicts (o, A a);

i f (tabu search) t hen

if Ala in tabu-list t hen conti nue;
/ljump to the next value
end if
nrConfs = | nl;

i f (conflict-based statistics) t hen
for eachB/b On do

nrConfs += CBS[A=a->B #b];

end if

i f (bestValues is empty) or (bestNrConfs > nrConfs) t hen

bestValues = {a};
bestNrConfs = nrConfs;
el se if (bestNrConfs == nrConfs) t hen
bestValues = bestValues 0 {a};
end if
end for
a = randomly selected value of bestValues;
i f (tabu search) t hen
add A/a at the end of tabu-list;
i f (tabu-list|>l s) then
remove the first element from tabu-list;
end
i f (conflict-based statistics) t hen
for each B/b Oconflicts (o,A a) do
CBS[A=a->B #b]++;
end for
end if
return a;
end procedure

Fig. 6.2.Value selection criterion (IFS CBS, IFS TABU, IFERWV)
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6.1. Binary Random CSP

In the following experiments we compare severalatons of the iterative
forward search algorithm and its improvements @anRandom Binary CSP with
uniform distribution [Bes96]. A random CSP is defih by a four-tuple
(n, d, p, p2), where n denotes the number of variables andndtde the domain
size of each variable,,@and p are two probabilities. They are used to generate
randomly the binary constraints among the varialgesepresents the probability
that a constraint exists between two different aldles and p represents the
probability that a pair of values in the domainstwb variables connected by
a constraint is incompatible. We use a so calledehB8 [MPSW98] of Random
CSP (n, d, n mp) where n = pin(n-1)/2 pairs of variables are randomly and
uniformly selected and binary constraints are pmbsietween them. For each
constraint, p= p,d” randomly and uniformly selected pairs of valuesgicked as
incompatible.

The following graphs (see Figures 6.3 and 6.4) esreshe number of
assigned variables in percentage to all variables. whe probability p
representing tightness of the generated sparséepnaDSP(50, 12, 250/1250;)p
and dense problem CSP(25, 15, 198/3QDrgspectively. The average values of
the best achieved solutions from 25 runs on diffepgoblem instances within 60
second time limit are presented.
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Fig. 6.4.CSP(25, 15, 198/300,)p number of assigned variables.

Each of the compared algorithms was able to fincbmplete solution
within the time limit for all the given problems tlvia tightness under 30% for
CSP(50, 12, 250/1250;,)pand under 20% for CSP(25, 15, 198/300), Achieved
results from min-conflict random walk, tabu searahd the conflict-based
statistics seem to be very similar for this problgabu search seems to be slightly
worse, min-conflict slightly better than conflicaéed statistics). Also, it is not
surprising that a usage of consistency maintenseat®iques lowers the maximal
number of assigned variables, e.g., both dynang&tkecking with MAC and IFS
with MAC extend an incomplete solution only whensitarc consistent with all
unassigned variables. As we can see from the afiguees, we can get better
results when we allow the search to continue evehere is a variable with
an empty domain.

The following graph (see Figure 6.5) presents thenlver of assigned
variables in percentage to all variables obtaingdiFS CBS algorithm, with
respect to the probabilities, mnd p representing density and tightness of the
generated problem CSP(25, 15, @) respectively. The average values of the best
achieved solutions from 10 runs on different problastances within 60 second
time limit are presented.
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Assigned [%)]

Fig. 6.5.CSP(25,15,p1,p2), number of assigned variabletH8rCBS.

Weighted Random Binary CSP (minCSP)

For the following results (Figures 6.6 and 6.7),twened the random CSP
problem into an optimisation problem (CSOP). Thalgs to minimize the total
sum of values for all variables. Note that eachialde has d generated values
from O, 1, ... d-1. For the comparison, we used (68P12, 250/1250, zp and
CSP(25, 15, 198/300,,)p problems with the tightness, paken so that every
measured algorithm was able to find a completetisolfor (almost) each of 10
different generated problems within the given 6€osels time limit.
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Fig. 6.6.minCSP(50, 12, 250/1250;)pthe sum of all assigned values.
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Fig. 6.7.minCSP(25, 15, 198/300,)pthe sum of all assigned values.

All algorithms can be easily adopted to solve tmsCSP problem by
selecting an assignment with the smallest valuengntioe values minimizing the
number of conflicts. But, the conflict-based stats can do better. Here, we can
add the value of the assignment to the number oflicts (weighted by CBS).
Then, a value with the smallest sum of the value e conflicts weighted by
their previous occurrences is selected. We carrdhfftis approach because the
weights of repeated conflicts are being increasednd the search, and the
algorithm is much more likely to escape from a lazénimum than the other
compared algorithms.

For this problem, the presented conflict-basedssied was able to give
better results than other compared algorithms. &lgerithm is obviously trying
to stick much more with the smallest values thandthers, but it is able to find a
complete solution since the conflict counters aseng during the search. Such
behaviour can be very handy for many optimisatioobfgems, especially when
optimisation criteria (expressed either by someecije function or by soft
constraints) go against the hard constraints.

Local Search

In this section we compare the presented confiseld statistics with
various local search algorithms. For all the coragdocal search algorithms, a
neighbour assignment is defined as an assignmeatewdxactly one variable is
assigned differently. The compared algorithms are:

« HC ... hill-climbing algorithm always selects the bestsignment
among all the neighbour assignments

+ HC RW ... hill-climbing random walk; with the given probéty pny
a random neighbour is selected. Otherwise, the hegghbour is
selected.
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HC TY(lis) ... tabu search, wheig is the length of the tabu list; the
best assignment among all the neighbour assignmientalways
selected. Moreover, if such an assignment is coathin the tabu list
(a memory of the ladts assignments), the second best assignment is
used and so on (except of an aspiration criterfachvallows to select
a tabu neighbour when the best ever found assignsésund).

HC CBS ... hill-climbing algorithm with conflict-based ststics
(constraint-based version); the best assignmeatways selected as
well, but the newly created conflicts are weightetording to the
conflict-based statistics.

MC min-conflict algorithm selects a variable in aolated
constraint randomly. Its value which minimizes timember of
conflicting constraints is chosen.

MC RW(P:y) ... same as min-conflict, but with the given proliapbi
Pw a random neighbour is selected.

MC TH(li) ... same as min-conflict, but there is a tabu-listthe
length |s used.

MC CBS ... same as min-conflict, but the newly created kctsfare
weighted according to the conflict-based statistics

Figures 6.8 and 6.9 present the number of conftictonstraints wrt. the
probability p representing tightness of the generated spars#epnoCSP(50, 12,
250/1250, p). The average values of the best achieved sokifimm 10 runs on
different problem instances within the 60 seconektlimit are presented.
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Fig. 6.8.CSP(50, 12, 250/1250;)pthe number of conflicting constraints for

hill-climbing algorithms.
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Fig. 6.9.CSP(50, 12, 250/1250,)pthe number of conflicting constraints for
min-conflict algorithms.

Figures 6.10 and 6.11 present the number of cainfljoconstraints wrt.
the probability p representing tightness of the generated densdepnoBSP(25,
15, 198/300, §.
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Fig. 6.10.CSP(25, 15, 198/300;,) the number of conflicting constraints for
hill-climbing algorithms.

- 65 -



T T T T
——MC —=- MC CBS
| MC RW(1%) MC RW(2%)
110 4+ { = MCRW(@%) —MCRW(5B%) |- —'- - - J___1______________
—+—MC TS(20) ——MC TS(50)
1= MCTS(100)  MC TS(200)

o

o

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

a o ~N o0
o

o

Number of conflicts

IN
o

304 ---1---

N
o

=
o
I

0 - ¥ ; f f f f f f . . . . .
20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90%
tightness (p 2)

Fig. 6.11.CSP(25, 15, 198/300;) the number of conflicting constraints for
min-conflict algorithms.

Overall, hill-climbing algorithms produce bettersudts than min-conflict
algorithms on the tested problems. MC CBS is dygktorse than MC RW
algorithms, but better than MC TS algorithms. As fall-climbing, HC CBS
seems to be slightly better than all other testgdrdhms on the given random
binary CSP problems. Moreover, there is no algoritpecific parameter (which
usually depends on the solved problem) unlike endbmpared methods (e.g., the
length of the tabu-list).

Weighted Random Binary CSP (minCSP)

The following results (Figures 6.12 to 6.15) arenpated on the weighted
random binary CSP. As for IFS, we used the probl€®B (50, 12, 250/1250;)p
and CSP(25, 15, 198/300,) pwith the tightness jptaken so that every measured
algorithm was able to find a complete solution faimost) each of 10 different
generated problems within the given 60 seconds limme
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Fig. 6.12.minCSP(50, 12, 250/1250;)pthe sum of all assigned values for
hill-climbing algorithms.
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Fig. 6.13.minCSP(50, 12, 250/1250;)pthe sum of all assigned values for
min-conflict algorithms.
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Fig. 6.14.minCSP(25, 15, 198/300;)pthe sum of all assigned values for
hill-climbing algorithms.
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Fig. 6.15.minCSP(25, 15, 198/300;)pthe sum of all assigned values for
min-conflict algorithms.

Overall, hill-climbing algorithms produce bettersudts than min-conflict
algorithms on the tested problems. As for hill-dinmg, HC CBS is able to give
the best results of all tested algorithms on botiblems.
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6.2. Random Placement Problem

The random placement problem (RPP; for more detadse
http://www.fi.muni.cz/~hanka/rpp/) seeks to placeset of randomly generated
rectangles (called objects) of different sizes imtolarger rectangle (called
placement area) in such a way that no objects awenhd all objects’ borders are
parallel to the border of the placement area. Iditemh, a set of allowable
placements can be randomly generated for eachtobjee ratio between the total
area of all objects and the size of the placemesd will be denoted as the filled
area ratio.

Definition 3.8 (RPP). Random placement problem is a CSP
® = (V,D,C) with the following properties:

o V={X1,Y1,X2,¥2,. ., Xn,Yn}

e D={Dx1,Dy1,Dx2,Dys,...,DX,,Dyrn}, i Dx; = {minx, minx +1, ...,
maxx}, Dy; = {miny, miny +1, ...,maxy}

» C={c}, wherec is the following not-overlap constraint

Oi, Oj, 17 = (x+dx<sx; O x+dx<x; Oyi+dyi<y; Oyj+dyi<yi)

where:

* nis the number of objects in RPP,

* XY are coordinates of i-th object,

* minx, miny, max, maxy are bounds of the i-th object,

e (dx,dy) is the size of i-th object,

* (RuR) is the size of placement area,

* [ 0<minx< maxx+dx <Ry & 0 < miny < maxy+dy <R,

RPP allows us to generate various instances optbklem similar to a
trivial timetabling problem. The correspondence as follows: the object
corresponds to a course to be timetabled — theordamate to its time, the y-
coordinate to its classroom. For example, a cotaisag three hours corresponds
to an object with dimensionsx3 (the course should be taught in one classroom
only). Each course can be placed only in a classrof sufficient capacity — we
can expect that the classrooms are ordered inagdgsh their size so each object
will have a lower bound on its y-coordinate.

In this chapter, we present capabilities of itexatiorward search on the
random placement problem, in solving both initia.( standard CSP) as well as
minimal perturbation problem.

6.2.1. Initial Problem

The following experiments were accomplished ont8 eéproblems, each
concerning 200 objects with filled area ratio o lange of 75%, 80%, 85%, ...
100%. Each set contains 50 different problems whth given filled area ratio.
Clearly all problems in the last two sets are as@mstrained. However, this may
also be true for other problems with the filledaratio “close” to 100 %. All

- 69 -



these problem instances are taken from http://wiwwini.cz/~hanka/rpp/. The
sizes of the generated objects are 2x1 (80.4%] afbgécts), 3x1 (16.6% of all

objects), 4x1 (2.6% of all objects) and 6x1 (0.4Palbobjects).

Table 6.16 shows the number of problem instancesplaiely solved in

each set by the tested algorithms within 5 minue fimit.

33
38
38
37
37
37
37
35
35

0

1

Filled Area Ratio: | 75% | 80%| 85%| 90%| 95%| 100%
IFS CBS 50/ 50| 50| 45| 47
IFS RW(1%) 50| 50| 50| 45| 47
IFS RW(2%) 50| 50| 50| 45| 47
IFS RW(3%) 50| 50| 50| 45| 47
IFS RW/(5%) 50| 50| 50| 45| 47
IFS TS(20) 50| 50| 50| 45| 46
IFS TS(50) 50| 50| 50| 45| 46
IFS TS(100) 50| 50| 50| 45| 47
IFS TS(200) 50| 50| 50| 45| 46
IFS MAC 49| 48| 43| 15 1
IFS MAC+ 50, 50| 47| 23 8

Fig. 6.16.Number of problems solved for each set of problems.

Figure 6.17 presents the average time needed doaficomplete solution
with respect to the filled area ratio. The averagenbers over all problem

instances from each set of problems are presented.
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Fig. 6.17.Average time wrt. filled are ratio.

100%

Dynamic backtracking algorithm (with either MAC BEC) was not able to
solve any problem instance at all, the average ®eurob assigned variables in
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percentage to all variables for DBT MAC were 90.688,9%, 84.5%, 84.5%,
83.3% and 81.68% for filled area ratio of 75%, 8@%%, 90%, 95% and 100%
respectively.

In [Ver03] a comparison of limited assignment numkearch (LAN)
[VRO2], dynamic backtracking (DB) [Gin93], limitediscrepancy search (LDS)
[HG95] and simulated annealing (SA) [KGV83] on g@me problem instances is
made. Neither DB nor LDS were able to find any ctatgsolution on the given
instances. The comparison of LAN and SA algorithiram this work is presented
on Figure 6.18.

Filled Area Ratio: 75% | 80%]| 85%| 90%| 95% | 100%
LAN 49 50 47 26 6 0
SA 47 44 40 22 13 6
Fig. 6.18.Number of problems solved for each set of problems.

6.2.2. Minimal Perturbation Problem

In this chapter we present some experiments on RIFR®Ilving minimal
perturbation problem. MPP instances were generasefdllows: First, the initial
solution was computed. The changed problem difiers the initial problem by
input perturbations. An input perturbation meanat thoth x coordinate and y
coordinate of a rectangle must differ from the iahitvalues, i.e. ¥Xinitia &
Y#Yiniial. FOr a single initial problem and for a given nwnbof input
perturbations, we can randomly generate variouaggth problems. In particular,
for a given number of input perturbations, we rantjoselect a set of objects
which should have input perturbations. The solutmMPP can be evaluated by
the number of additional perturbations. They axegiby subtraction of the final
number of perturbations and the number of inputupations.

The following experiments were accomplished witB IEBS algorithm on
7 problems, each concerning 200 objects with differfilled area ratio. Filled
area ratio is displayed in the parenthesis nekigmame of the problem instance.
The tested problem instances are available onttaehed CD-ROM.

Figure 6.19 shows the number of additional pertiiwha as a function of
the number of input perturbations. Both numbersiagercentage to the number
of objects in the problem (which is 200).

The IFS CBS algorithm was able to find a compleasible solution in
each test run. Moreover, the number of additior&atysbations was very low.
Similarly as in the input problem, IFS RW and IFS Were able to return very
similar results as IFS CBS.
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Fig. 6.19.Additional perturbations wrt. input perturbations.

In [RBMO4], we proposed a branch-and-bound algorithbased on
an incomplete LAN (limited assignment search) atgar [VR02] to solve MPP
problems. The Figure 6.20 presents the results fiieBMO04], where the IFS
algorithm was compared with the proposed branchkemohd algorithm on the
random placement problem. We used fifty initial igeons and five MPPs per an
initial problem. We compared the algorithms on gineblems consisting of 100
objects with filled area ratio 80% and we did theperiments for input
perturbations from 0 to 100 with the step 4. Thu$o0100% relative input
perturbations are covered.

The compared branch-and-bound algorithm was imphéadein SICStus
Prolog with the use of disjoint2 global constrdl@©C97] over x-coordinates and
y-coordinates to ensure that the objects will neerap. Unfortunately, this
represents a difference in the notion of the coeiscy of a partial assignment
between the compared branch-and-bound and IFSitalgst

Figure 6.20 shows the number of additional pertiwha, the number of
assigned variables, and the CPU time as a funatiothe number of input
perturbations for both algorithms. We expect thengarison to be the most
meaningful for a smaller number of input perturbas (up to about 25%) because
this is the area of the highest interest for MPRsre the branch-and-bound
algorithm seems to be comparable with IFS solvéeims of the solution quality.
Still, the IFS algorithm is much faster there.
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Fig. 6.20.Comparison of the IFS) with branch-and-bound algorithrm}.

6.3. Purdue Timetabling Problem

In this chapter, we present capabilities of itexatiorward search on the
real-life course timetabling problem of Purdue Umsity (see chapter 3.4 for the
description of the problem). Results from solvirghoinitial as well as minimal
perturbation problems are presented. Comparisasolitions given by the IFS
algorithm with a hand-made solution is also an irtgea part of this chapter.

The following experiments were performed on the plate Fall 2004 data
set, including 830 classes to be placed in 50 @asss. The classes included
represent 89,677 course requirements for 29,808ests. We have achieved
similar results with Fall 2001, Spring 2005 and| &8IO5 data sets as well, even
though they are quite different in the number afuieements (Fall 2004 is the
most constrained one out of these four data se¢s) the following table for more
details. Thetotal number of hoursepresents the number of hours allocated by
a class summed over all classes. fdtal number of all placementspresents the
number of all possible placements (i.e., placemesish do not break any unary
hard constraint) of a class summed over all classes
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Data set (term) Fall 2001  Fall 2004 Spring 2005  Fall 2005
Total number of classes 747 830 793 856
Total number of meetings 1630 1791 1685 1810
Total number of used half-hours 3648 4060 3862 4096
Total number of rooms 41 50 50 51
Total number of group constraints 153 171 147 178
Total number of students 28994 29810 26087 29318
Total number of course requirements 81328 89677 74923 86874
Total number of all values 210466 168314 186892 221577

Fig. 6.21.Comparison of data sets for Purdue University Tabéhg

Besides the discussed IFS solver, the timetablpmgiation for Purdue
University also contains a web-based graphical igerface (written using Java
Server Pages) which allows management of seversioves of the data sets (input
requirements, solutions, changes, etc.), browshey resultant solutions (see
Figure 6.22), and tracking and managing changesgdast them.
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Fig. 6.22.Generated timetable in web-based graphical useriace.

Student Scheduling

Many courses at Purdue University consist of sdveegtions, with
students enrolled in the course divided betweemmtheSections are often
associated together by some constraints. For deasgrtions of the same course
should not overlap. Each such section forms onssclahich has its own
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preferences. Therefore each section is treatearaiety - there is a variable for
each section.

An initial sectioning of students into course sews is processed. This
student sectioning is based on Carter's [CarOO]dgemeous sectioning and it is
intended to minimize future student conflicts. Heee there is still a possibility
of improving the solution with respect to the numbestudent conflicts. This can
be achieved via section changes during the search.

In the current implementation, sectioning is alenly by switching
student enrolments between two different sectiohghe same course. Each
student enrolment in a course with more than orwicse is processed. An
attempt is made to switch it with a student enraitrfeom a different section. If
this switch decreases the total number of studemlicts, it is applied.

We have compared two possibilities for switchingesth student
enrolments. The first possibility is during theageh, after a course is placed in
the timetable. If a class is part of a course withltiple sections, an attempt is
made to switch students with other sections otthese. Also, when a course has
only one section, the system tries to move somgesiis in multi-section courses
who have a conflict with this class.

The second possibility, which appears to be mustefabut with similar
results, is to switch students only when the bekiti®n is found. In this case, the
students are switched in the current solution, feefio is stored as the best
solution. All classes are processed and attempietthes are made between
students in the same course. Note that a switch stident enrolment can be
followed with subsequent switches, so that classesbe processed more than
once.

Search Algorithm

The quality of a solution is expressed as a wedylsten combining soft
time and classroom preferences, satisfied soft grooanstraints and the total
number of student conflicts. This allows us to egsrthe importance of different
types of soft constraints. The following weightse apnsidered in the sum:

s Wsudent... Weight of a student conflict,

+  Wine ... Weight of a time preference of a placement,

+ Wioom ... Weight of a classroom preference of a placement,

+  Woeonstr... Weight of a preference of a satisfied soft groapstraint,

+  Winstraist --- Weight of a distance instructor preference gilacement
(as described in chapter 3.3.2, it is discouradgethére are two
subsequent classes taught by the same instrudtpidmed in different
buildings not farther than 50 meters, strongly disaged if the
buildings are more than 50 meters but less thamagi@rs far)

» Waepmal ... Weight of the overall department balancing pgn@umber
of the time units used over initial allowances swdnover all times
and departments, see chapter 3.3.2 for details)
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+  Wysihour-.- Weight of a useless half-hour (empty half-houmet
segments between classes, such half-hours cannaosdik since all
events require at least one hour)

« Whigroom ... Weight of a too large classroom gMbom for each
classroom that has more than 50% excess seats)

Note that preferences of all time, classroom amadigrsoft constraints go
from -2 (strongly preferred) to 2 (strongly discaged). So, for instance, the
value of the weighted sum is increased when treeediscouraged time or room
selected or a discouraged group constraint satisfiberefore, if there are two
solutions, the better solution of them has the toweighted sum of the above
criteria.

The termination condition stops the search whenstietion is complete
and good enough (expressed by the solution quadisgribed above and, in case
of minimal perturbation problem also by the numbkallowed perturbations). It
also allows for the solver to be stopped by the.uSkaracteristics of the current
and the best achieved solution, describing the murobassigned variables, time
and classroom preferences, the total number oestucbnflicts, etc., are visible
to the user during the search.

The solution comparator prefers a more completetisol (with a smaller
number of unassigned variables). In case of minipeturbation problem, a
solution with a smaller number of perturbations agaolutions with the same
number of unassigned variables is preferred. Ihbstlutions have the same
number of unassigned variables (and perturbatiahg)solution of better quality
is selected.

If there are one or more variables unassigned, viimeable selection
criterion picks one of them randomly. We have trgmVeral approaches using
domain sizes, number of previous assignments, nigrdfeconstraints in which
the variable participates, etc., but there was igoifscant improvement in this
timetabling problem towards the random selectioarotunassigned variable. The
reason is, that it is easy to go back when a wraaugable is picked - such
a variable is unassigned when there is a conflitt win some of the subsequent
iterations.

When all variables are assigned, an evaluationadenfor each variable
according to the above described weights. The bigriaith the worst evaluation
Is selected. This variable promises the best imgmrent in optimisation.

We have implemented a hierarchical handling of Wiadue selection
criteria. There are three levels of comparisone#th level a weighted sum of the
criteria described below is computed. Only sohsiavith the smallest sum are
considered in the next level. The weights express duickly a complete solution
should be found. Only hard constraints are satisin the first level sum.
Distance from the initial solution (MPP), and a glging of major preferences
(including time, classroom requirements and studenflicts), are considered in
the next level. In the third level, other minorteria are considered. In general,
a criterion can be used in more than one level, with different weights.
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The above sums order the values lexicographictily:best value having
the smallest first level sum, the smallest secewdllsum among values with the
smallest first level sum, and the smallest thinklesum among these values. As
mentioned above, this allows diversification betwége importance of individual
criteria.

Furthermore, the value selection heuristics alggpst some limits (e.qg.,
that all values with a first level sum smaller ttegiven percentage,Rabove the
best value [typically 10%] will go to the secongdecomparison and so on). This
allows for the continued feasibility of a value nea the best that may yet be
much better in the next level of comparison. Hrthis more than one solution
after these three levels of comparison, one isceederandomly. This approach
helped us to significantly improve the quality bétresultant solutions.

In general, there can be more than three levekhede weighted sums,
however three of them seem to be sufficient foreading weights of various
criteria for our problem.

The value selection heuristics also allow for randgelection of a value
with a given probability R (random walk, e.g., 2%) and, in the case of MBP, t
select the initial value (if it exists) with a giverobability Ry (e.g., 70%).

Criteria used in the value selection heuristics loamlivided into two sets.
Criteria in the first set are intended to genesat®mplete assignment:

« Number of hard conflicts, weighted by 1 in the first level, Wont2
in the second level and.¥3in the third level.

« Number of hard conflicts, weighted by their preswaccurrences (see
section 5.1 about conflict-based statistics) an®/ ¥ns 1.3

Additional criteria allow better results to be amled during optimisation:

« Number of student conflicts caused by the valuti# assigned to the
variable, weighted by Mident 1.3

« Soft time conflicts caused by a value if it is gagid to the variable,
weighted by V¥me 1.3

« Soft classroom conflicts caused by a value if itagsigned to the
variable (combination of the placement's buildinggpom, and
classroom equipment compared with preferences),ghteil by
Vroom,l..3

« Preferences of satisfied soft group constraintseduy the value if it
is assigned to the variable, weighted hynM 1.3

- Difference in the number of assigned initial valueghe value is
assigned to the variable (weighted by.¥:1 3): -1 if the value is initial,
0 otherwise, increased by the number of initialueal assigned to
variables with hard conflicts with the value.

« Distance instructor conflicts caused by a valui¢ i§ assigned to the
variable (together with the neighbour classes)giveid by \Visirdist 1.3

- Difference in department balancing penalty, weighgepival,1..2

-77 -



- Difference in the number of useless half-hours (bpemof empty half-
hour time segments between classes that arise,snthase which
disappear if the value is selected), weightgghdir1.3

« Classroom is too big: 1 if the selected classro@® imore than 50%
excess seats, weighted byigéom 1.3

Let us emphasize that the criteria from the seagnoadip are needed for
optimisation only, i.e., they are not needed todfia feasible solution.
Furthermore, assigning a different weight to aipaldr criteria influences the
value of the corresponding objective function (e.see Figure 6.23 with
comparison for optimisation criteriasMent1.38Nd Mime,1.9. The solver returns
good results in reasonable time (e.g., in 30 metitee limit) when the total sum
of the weights used in additional criteria in timstflevel corresponds to one half
of the weight Vicont1. The weights in the second level usually corredpmnthe
weights used for the solution quality comparison\Wh: Wime, Wroom Weonstr
Winstrdisﬁ Wdeptbal V\/uslhourand \N)igroonb-

Below, we present two types of experiments. Tist investigates finding
an initial solution (e.g., when all requiremente ataced in the system). This is
followed by experiments on the minimal perturbatmoblem (e.g., where there
is an existing solution plus a set of changes tapmied to it). Solving an initial
problem can be seen as a special case of MPP \alierariables are new and
therefore have no initial values.

If not stated otherwise, the solution quality wesgMVswden: Wime, Wroom,
Woeonsts Winstrdiss Waeptoat Wusihour@nd Whigroom IN the solution quality weighted sum
are set to zero in the following experiments. Fiestel weight for the weighted
hard conflicts Vcont1 is set to 1, all other weights in the value sébectriterion
are set to zero. Also, there is no random valuecgeh (R,=0) and there is a 10%
threshold limit (R=0.1) between levels. This way, by default, onlg thard
constraints are considered during the search. Wekaw how the other weights
influence the search process and the overall soluduality. Also, if not stated
otherwise, distances between buildings are not ideresd and department
balancing is not used. The results presented infaHewing chapters were
computed on 1GHz Pentium 3 PC running Windows 200t 512 MB RAM
and JDK 1.4.2.

6.3.1. Initial Problem

Figures 6.23 and 6.24 show the computational redalt 8 independent
experimentsTimerefers to the amount of time required by the soteefind the
presented solutionSatisfied enrolmentsgives the percentage of satisfied
requirements for courses chosen by studdétisferred timeand preferred room
correspond to the satisfaction of time and roonfepemces respectively. 100%
corresponds to a case when all classes are pladeeir most preferred times or
rooms, 0% means a case when the least preferratidos are usedJseless half-
hoursgives the percentage of empty half-hour time segsnbatween classes to
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all empty half-hoursToo big roomgives the usage of classrooms that have more
than 50% excess seats (given percentage of ajjresgbiclasses is placed into such
big classrooms)instructor preferencesorresponds to the satisfaction of distance
instructor preferences (100% means that there isdisoourage or strongly
discouraged case, 0% means that all two subsegiesses taught by the same
instructor are strongly discouraged because ofdik&nce). And finally Dept.
balancing penaltyresents the overall department balancing penadso in such
case means that there is no class placed ovemifi@ balancing allowances.
Preferences of soft group constraints are not ptede since there are no such
constraints in the Fall 2004 data set (all groupst@ints are either required or

prohibited).

Test case No preference Students Time Room
Assigned variables [%)] 100.00 £0.00 | 100.00 £0.00 | 100.00 £0.00 | 100.00 +0.00
Time [min] 0.16 £0.03 8.45+4.40 18.68 £ 6.50 0.17+£0.01
Satisfied enrolments [%] 98.26 £ 0.15 99.74 £ 0.02 98.20 £0.13 98.18 £ 0.24
Preferred time [%] 62.54 £1.19 65.33 £1.45 98.75 £0.13 62.14 +0.94
Preferred room [%)] 63.64 £2.29 62.60 £1.66 62.82 + 2.07 98.58 + 0.29
Useless half-hours [%] 1.64 £0.23 1.64£0.16 1.42 £0.14 1.66 £0.19
Too big rooms [%)] 27.20£1.06 25.31 £0.59 23.77 £ 0.53 26.76 £ 0.96

Fig. 6.23.Solutions of the initial problem (no preferenceadsnts, time or
room optimised)

Useless Too big Distance Distance
Test case half-hours rooms instructors students
Assigned variables [%] 100.00 £0.00 | 100.00 +£0.00 | 100.00 +0.00 | 100.00 +0.00
Time [min] 19.14 +8.26 0.05+0.01 0.18 £0.04 7.72+7.54
Satisfied enrolments [%] 98.04 £ 0.15 98.19 £ 0.08 97.46 £0.26 99.53 £ 0.02
Preferred time [%] 60.69 +2.75 61.43 +0.87 61.80 + 0.85 66.44 +1.89
Preferred room [%)] 60.09 +£1.88 65.69 +1.88 64.67 + 1.96 64.03 £0.97
Useless half-hours [%] 0.84 +0.15 1.74+£0.25 1.55+0.17 1.83+0.14
Too big rooms [%)] 25.63 +0.69 17.21+0.18 27.77 £0.73 24.64 +0.47
Instructor preferences [%] 100.00 £ 0.00 | 90.34 +3.92

Fig. 6.24. Solutions of the initial problem (useless half4suoo big rooms
or distances either for instructors or students aptimised)

A complete solution was found on every run of aiberiments. Average
values together with their RMS (root-mean-squasg)ances of the best achieved
solutions from 10 different runs found within 30nute time limit are presented.

The experiment markeldo preferenceresents average solutions obtained
without any preferences on the soft constraint$.salution quality weights W
and value selection weights V are set to zero, mxoé the weight Vconri=1
(weight of the weighted hard conflicts in the filstel of the value selection).

The following five experiments markestudents Timg Rooms Useless
half-hoursandToo big roomsare minimizing just one of the criteria: the stode
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conflicts, violated time preferences, violated ropneferences, the number of
empty half-hour segments between classes and Hye ud classrooms that have
more than 50% excess sedisudentsexperiment uses the same weightdNas
preference experiment, but student weights are the followingiugent £0.5,
Vstudent =Wswdenel.  Similarly, Time experiment uses weights ) 1=0.5,
Viime,=Wiime=1, Roomsexperiment weights ¥om =0.5, Vioom =Wioonr=1, Useless
half-hours experiment weights Mnour,£0.5, Visihour=Wusihou=1 and Too big
roomsexperiment weights Mgroom,70.5, Vhigroom,=Whigroon=1.

The last two experiments of Figure 6.24 marksstance instructorgind
Distance studentsre minimizing either overall distance instructantticts or
student conflicts. In both cases distances betweédings are considered. Recall
that as for students, if the distance between wlloviing classes is more than
670 meters, the joint enrolments of such classes cansidered as student
conflicts (it is not possible for a student to attdoth classes, same as when these
classes are overlapping in time). ExperimBigtance Studentsises the same
weights as the experimeBtudentsthere is around 0.21% of additional student
conflicts caused by the distances of the buildigste that distances are not
considered in the experimeBtudent This represents about 183 student conflicts.
Distance instructorsexperiment uses the same weights Ng preference
experiment, but distance instructor preference ktsigare the following:
Vinstrdist, 0.5, VMinstrdist =Winstrais=1. There is no case of two subsequent classes
taught by the same instructor but placed in twéed#t buildings in this case.

All, but
Test case no distance, All, but All, but All
no dept. bal. no distance no dept. bal.

Assigned variables [%)] 100.00 £0.00 | 100.00 £0.00 | 100.00 +£0.00 | 100.00 £0.00
Time [min] 14.61 +4.61 20.36 £5.16 13.77 £3.89 21.48 £4.82
Satisfied enrolments [%] 99.59 +£0.02 99.52 £ 0.04 99.31 £0.03 99.26 £ 0.03
Preferred time [%] 95.04 +£0.34 92.21 +0.39 94.61 + 0.29 91.85+0.28
Preferred room [%)] 74.95+£2.43 75.79 £ 2.60 7280+ 2.73 72.31+£1.90
Useless half-hours [%] 1.40£0.22 1.52+£0.19 1.48 +0.24 1.47 £0.10
Too big rooms [%)] 2243 +£0.51 22.55+£0.78 22.37+£0.55 22.59 £0.69
Instructor preferences[%)] -- 95.80+1.32 | 95.74+2.17
Dept. balancing penalty 3.38 £1.92 -- 5.00 + 1.07

Fig. 6.25. Solutions of the initial problem (all preferencamstraints
optimised)

Figure 6.25 shows the results from another 4 ewrpenis, now with all
soft constraints enabled. Again, a complete salutvas found on every run of all
experiments and average values together with RBIE variances of the best
achieved solutions from 10 different runs foundhmt30 minute time limit are
presented.

The experiment markedlll, but no distance, no dept. balbmbines all the
above weights. Student conflicts and time prefezsrare weighted equally, room
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preferences are considered much less importantessséalf-hours and too big
rooms are considered as very minor criteria. Thights are as follows:

+ Student conflicts: Wudert1, Vstudent, £0.2, Vswdent =1

« Time preferences: Wie=1, Viime =0.2, Viime =1

+ Room preferences: Wn=0.2, Vioom =0.0, Vioom 7=0.2

+ Useless half-hours: Whou=0.05, Misihour, 0.0, Visihour,=0.05
« Too big rooms: Wgroon=0.05, Vigroom,=0.0, Whigroom,=0.05

TheAll, but no distancexperiment comes out of the previous experiment,
but with department balancing enabled. Departmesitiniting weights are
WoaeptbaF0.5, Vieptba, #0.1, Vuepwa,#0.5. The initial balancing allowance was
computed from the maximal fill factor as descrilbbeahapter 3.3.2 (increased by
20% and rounded upwards). Accomplishment of tinegguences is worse than in
the previous experiment, but the departmental loalgnis much better and the
resultant solutions are more acceptable from thersupoint of view. Without
department balancing, the overall balancing pen&tyabout 300 which is
unacceptable.

TheAll, but no dept. baéxperiment comes also out of the experimht
but no distance, no dept. babut now the distances between buildings are
considered. Distance instructor preference weighte set as follows:
Winstrdis=1.0, Mnstrdist, =0.2, Mnstrdist,>=1.0.

The last test from Figure 6.25 (mark&d) most closely corresponds to
reality. Here all the soft preferences are considleAlso, both distances between
buildings and departmental balancing features ased.u The weights are
combined from the previous tests (same alinbut no distance, no dept. bal.
experiment, plus department balancing weights asAlin but no distance
experiment and distance instructor preferencesnaglli but no dept. bal
experiment). Such solutions were very well accepieyl the schedule
representatives at Purdue University.

Test case No CBS

Assigned variables [%] 98.42 +0.20
Time [min] 24.08 £4.42
Satisfied enrolments [%] 99.52 £ 0.06
Preferred time [%] 94.62 £ 0.43
Preferred room [%)] 83.77 £1.49
Useless half-hours [%] 1.48 £0.27
Too big rooms [%)] 22.78 £0.57

Fig. 6.26.Solutions of the initial problem (without conflisgsed statistics).

Finally, the last experiment (Figure 6.26, markdd CBS presents
average solutions obtained from the solver withmuriflict-based statistics. The
weights on soft constraints are the same as irptéeious experiment (marked
All, but no distance no dept. balBut there is ¥onr ;=1 (Weight of a hard conflict)
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instead of W.cont, =1 (Weight of a hard conflict weighted by CBS)ycMir 1 IS Set to
zero. The solver was not able to find a completet®sm within the given 30
minute time limit, not even when 2% random wallesébn was used0.02 to
avoid cycling. Furthermore, there were at leashassigned classes after 3 hours
of run. On the Purdue Timetabling Problem, cordiated statistics proved itself
not only as a technique which can improve the gmiuguality, but as a technique
which can help us to find a complete feasible smiut

IFS MAC was able to assign only about 65% of vdesblFS MAC+
assigned about 94% variables. Consistency was ama@at over all hard
constraints. We plan to use MAC+ only over the grawonstraints, e.g. a
precedence constraint between two or more coursasooverlap constraint
between a lecture and its seminars. However, thd data set contains only 201
of such constraints, so there is no significantedénce between a solution with
and without MAC+ (IFS CBS versus IFS CBS with MAGr group constraints).

Figure 6.27 compares several experiments givinderdiit stress on
student conflicts and time preferences. Averagaesfrom the best solutions of
10 different runs found within 30 minute time linaite presented.

Only student conflicts or time preferences are red in the border
experiments markedtudentsand time respectively. In the middle (experiment
marked 1:1), student conflicts and time prefererames equally weighted. The
experiment marked 3:1 prefers student conflicteehtimes as much as time
preferences (i.e., weights of student conflictstaree times higher than weights
of time preferences) and vice versa. For instatimeexperiment marked 1:2 has
the fOHOWing WeightS: VMeonf,i=1, Vstudent £0.2, Viime,=0.4, Vstudent,=Wstudent1,
Viime,=Wiime=2.

100% 80%

60% -
40% -
20% -
0%
-20% -
-40% -
-60% -
-80% -

95% -
90% -
85% -

80% -
75% -
70% -
65% -

60%

T T T T T _100%
students  3:1 2:1 11 1:2 1:3 time students  3:1 2:1 1:1 1:2 1:3 time

-+ Satisfied st. enrollments- Time preferences -e- Satisfied st. enrollments- Time preferences

Fig. 6.27. Comparison of satisfied student enrolments and preferences:
average quality of the solution (left), improvemehthe solution in
terms of percentage of the 1:1 solution (right).

Comparison with manual solution

Figure 6.28 presents a comparison of solutions hinere generated by
the IFS CBS solver with the manual solution mad@w@adue University for the
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semester Fall 2005. As for IFS CBS, a completetsolwas found on every run.
Average values together with their RMS (root-megnase) variances of the best
achieved solutions from 10 different runs foundhwit30 minute time limit are
presented. The same settings were applied as iteshenarkedll from Figure
6.28.

Test case IFS CBS Manual
Assigned variables [%)] 100.00 +0.00 100.00
Time [min] 12.01 £3.77 a week
Satisfied enrolments [%] 99.39£0.01 98.20
Preferred time [%)] 92.69£0.34 89.02
Preferred room [%] 75.27 £1.42 83.04
Useless half-hours [%] 3.46 £ 0.63 4.11
Too big rooms [%)] 20.78 £ 0.45 20.92
Instructor preferences [%)] 97.29 +1.15 94.71
Dept. balancing penalty 7.60 +5.02 311

Fig. 6.28.Comparison of a solution generated by IFS CBS anthaually
created solution for Fall 2005.

The solutions generated by IFS CBS are better temnanual solution in
many aspects. Moreover, using different weightsdigtimisation criteria, it can
be tuned quite well.

6.3.2. Minimal Perturbation Problem

The following experiments were conducted on onéhefcomplete initial
solutions computed in the previous set of experismérolumn markedll, but no
dept. balin Figure 6.28). Input perturbations were generaech that a given
number of randomly selected variables were notwadtbto retain the values they
were assigned in the initial solution. Therefohese classes can not be scheduled
to the same placement as in the initial solutiothée room or starting time must
be different). Only variables with more than on&ean their domains were used.
For each number of input perturbations, ten differsets of input perturbations
(i.e., variables with initial values prohibited) rgegenerated. The following
figures show the average parameter values of teedmdutions found within 10
minutes.

The aim of the first set of experiments is to fiadsuitable setting for
Pnit (orobability of selection of an initial value) anthini1. 3 (difference in the
number of assigned initial values). In each expenitnwe have executed 10 tests
for each of 10, 20, 30, ... 100 input perturbaticespectively (100 runs in total).
The average numbers of assigned variables togefkiethe average numbers of
additional perturbations are presented in Figu28.60ne or a combination of the
criteria is used in each experiment. The seconaneolrefers to the set of criteria
described in Figure 6.30.
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Testcase Assigned Number of
Pt Ainit | variables [%] | perturbations
0.5 0 100.00 13.83
0.6 0 99.98 13.48
0.7 0 99.96 13.33
0.8 0 99.95 12.94

0 2 100.00 31.40
0.6 2 99.99 13.26

0 1 100.00 13.70
0.6 1 100.00 11.90

Fig. 6.29.Comparison of several approaches to MPP.

Ainit V ainit, Vstudents,s Viimet Vroom,r
0 - 0.254-1, 1.0 0.25¢1,1.0¢= 0.2,
1 0.5 1.0 10 0.2
2 102 0.254-1, 1.043 0.25-;, 1.0 3 0.2,-3

Fig. 6.30.Meaning ofAinit

Let us explain the contents of this table. Foranse, the expression
0.25-3, 1.Q=2 in the column marked Mgentssmeans that Y,qents 1iS set to 0.25
and Vswgents 2S Set to 1. The first casaifit=0) corresponds to the settings of the
All, but no dept. baéxperiment. In remaininginit sets, we tried to decrease the
importance of other value selection criteria in pamson with the W criterion.
For Ainit=1, the first level value selection criterionyM,1 is used and the other
optimisation criteria which were placed in the ffilgvel are disabled (Mdent1
Vime,1 are set to zero). And the third linénit=2 corresponds to a case when the
second level value selection criterionn/2 is used and the other optimisation
criteria from the second level {Msent2 Viime.2 Vrioom2 are moved to the third
level.

Let us discuss particular experiments from FiguB®6In the first four
experiments (marked;#2=0.5, ..., Ri=0.8), the minimal perturbation problem
was solved only by changing the value selectiotega so that it selected an
initial value with a given probability (50%, 60%0% and 80% respectively).
Otherwise, it worked exactly aall, but no dept. bakxperiment, since all the
other weights were the same. As thg Probability is rising, we can see that the
average number of additional perturbations is dediog, but the algorithm is
loosing the ability to find a complete solutionawery run (in the given 10 minute
time limit).

Similarly, we can see that using just the seconllealue selection
criterion Viainit2 IS able to find a complete solution all the tinbeif the average
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number of additional perturbations is too high. dmbination with the 60%
probability of an initial value selection helpsitoprove the average number of
additional perturbations, but again, there were esarases where a complete
solution was not found.

Using the first level value selection criteriayi/1 seems to be very
promising. With this criterion, we were able todia complete solution to all the
presented experiments. Moreover, the experimentkedarR,;=0.6, Ainit=1
(combining Vinit1 With 60% initial value selection probability) gaus the best
results from the above experiments, since the geeraumber of additional
perturbations was the lowest. The following res(ifigures 6.31 and 6.32) were
computed using the weights from this experiment.

Figure 6.31 presents the average number of additiperturbations
(variables that were not assigned to their initialue though not prohibited).
Additional perturbations are presented wrt. the ohlte number of input
perturbation (i.e., up to about 13.4% of input pdyations is considered). The
best solution found within 10 minutes from eacheskpent is taken into account.
The number of additional perturbations grows withe tnumber of input
perturbations.
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Fig. 6.31.Absolute number of average additional perturbatidet) and
average additional perturbations in terms of petege of the number
of input perturbations (right).

The graph on Figure 6.32 (left) shows the averagdity of the resulting
solutions in the same manner as presented in Fig2® Because the initial
solution is (at least locally) optimal, and becauke number of additional
perturbations is the primary minimization criterig,is not surprising that the
quality of the solution declines with an increasmgnmber of input perturbations.
The weighting between time preferences, studentiictsy and other parameters
considered in the optimisation can have a simiifluénce as seen in the initial
solutions.
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Finally, the graph in Figure 6.32 (right) presetfis average time needed
to find the best solution. Note that a 10 minuiesetlimit for finding the best
solution was set. The influence of this limit i®semostly on the right portion of
the chart, where the number of input perturbatexteeds 50.

Perturbationsin practise

In practise, the strategy for computing perturbatioeeds to be extended.
For example, a change in time is usually much wdhsgén a movement to a
different classroom. The number of enrolled/invalvetudents should also be
taken into account. Another factor is whether tlodutton has already been
published or not.

The priorities for evaluating perturbations are fmlows. Before
publishing timetable:

« minimize number of classes with time changes,
« minimize number of student conflicts,
- optimise satisfaction of problem soft constraints.

After publishing the timetable:

« minimize number of additional (new) student coréljc
« minimize number of students with time changes,

« minimize number of classes with time changes,

« optimise satisfaction of problem soft constraints.

In both cases, the number of classes with room gdhas not significant at all.
Before the timetable is published, minimizing themiber of classes with time
changes is the most important criteria for the MBRong as it does not create too
many additional student conflicts in the procedseréfore, as a compromise, the
cost (in equivalent conflicts) of changing the timssigned to a class equals a
number like 5% of the students enrolled in thas€l@therwise none of our other
criteria would have any importance.
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Similar properties apply between other criterianedl. To fulfil all these
needs we have created a function (called pertanmtpenalty, see Definition
2.19) which can be computed over a partial solutidms is a weighted sum of
various perturbations criteria like the number lafsses with time changes or the
number of additional student conflicts. This pdratron penalty is added as an
extra optimisation criterion to the solution conmgtar and to value selection
criterion, so we can also setup the weights betwiesnperturbation penalty and
other (initial) soft constraints.

6.3.3. Summary

We have proposed and implemented a solution toge Iscale university
timetabling problem. Our proposal includes a neeraitive forward search
algorithm that is extended by conflict-based stiagswhich can be generalized to
other search algorithms. Both ideas combined tegesuffice to solve the
problem and the role of additional heuristics canminimized. Our problem
solver is able to construct a demand-driven timetads well as incorporate
dynamic aspects. The initial solution generatedbly solver satisfies the course
requests of more than 99% of students together wafibut 95% of time
requirements. The automated search was able to gunthble times and
classrooms for all classes. The experiments withP® give us very promising
results as well. Within 10 minutes, the solver aa$e to find a complete, high
guality solution with a small number of additioparturbations.

Moreover, the used heuristics can be tuned to nmeliiniulfil the user
requirements, e.g., when there is a need of a-tvHdeetween several objective
functions. We have demonstrated this, for instanmcethe experiment giving
different stress on the satisfied student enrolmerd time preferences for
Purdue University timetabling problem (see figur27.

6.4. Summary

In this chapter, we demonstrated several propediegerative forward
search algorithm on a set of various constrainisfe&tion and optimisation
problems. On random binary CSP and RPP, we prabatgecapabilities of
solving “normal” as well as over-constrained proidein comparison with DBT
and LS algorithms. On the weighted random binary? @& can clearly see that
the presented conflict-based statistics togeth#r wither IFS or LS can perform
very well on optimisation problems. On RPP and Bartniversity timetabling
problem we presented the capabilities of IFS tovesahinimal perturbation
(optimisation) problems. Finally, on Purdue Univirdimetabling problem we
presented applicability of IFS to a real-life lasgale optimisation problem.

We believe that the presented iterative forwardctealgorithm, together
with the presented extensions (mainly conflict-lbasttistics), can be used for
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many other real-life constraint satisfaction andirojsation problems. We hope
that the presented properties are valid for suohlpms as well.
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7. Conclusion

In this thesis, we have presented an iterative dodwsearch algorithm
which is capable of solving various timetabling asll as general constraint
satisfaction and optimisation problems. It is basadocal search, but it works
with partial feasible solutions, so it is capableeiurning a (partial) solution any
time during the search. This might be a very imgatrifeature, especially if the
algorithm is used in an interactive manner. It strt from any (partial) solution
and it can be used for both initial and minimaltpdration problem. We have
also presented various extensions of this algorithmech can improve the quality
of the returned solutions as well as applicabibifythe algorithm on various
problems.

Also, the presented algorithm works well on thd-léalarge scale course
timetabling problem at Purdue University. The gatext solutions were very well
accepted on Purdue University and they are goingséothis solver in practice as
of semester Spring 2006. Moreover, we are goingxtend this solver to be used
not only for the generation of the central timetaldut also for all the
departmental timetabling problems. These problemadifferent structure and
also there are some other constraints which nebd tmplemented.

The major contributions of this work are: We hawfimed a minimal
perturbation (optimisation) problem. This definitids applicable on various
dynamic problems where the task is to find a sotutif a modified problem that
IS as near as possible to the solution of the maigproblem. Next, we have
developed the iterative forward search algorithmctvhis capable as we believe
of solving various constraint satisfaction and wgation problems as well as
minimal perturbation (optimisation) problems. Wevéaalso presented the
conflict-based statistics which can be used infthenework of IFS or a local
search algorithm and we have shown that it coudanditically improve the results
especially when solving optimisation problems. Hjnave were able to solve
Purdue university large lecture room timetablingljpem and we are going to
continue using the presented approaches for tharoiegntal problems as well.
Also, we have published four data sets (from fatfecent semesters, also present
on the attached CD-ROM) of Purdue timetabling peobin a clear, anonymous
form which can be used as an interesting timetgtldenchmark.
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Appendix A |FS Framework

The iterative forward search algorithm was impletadnin Java. The
implementation is very general and it can be easlysed for modelling and
solving various problems. In this chapter, somela@mgntation aspects of the
iterative forward search framework are discussex.rfore details, consult the
implementation or API (JavaDoc) documentation andttached CD-ROM.

The general implementation works with abstract sg#as describing
variables, values and constraints. There is a diassribing model, which is
basically a container of available variables andst@ints and a class describing
solution which has the ability to store the bestrdound solution. Next, there are
some interfaces and general implementation of sacgsheuristics, namely
variable, value selections, a solution comparatud a termination condition.
Finally, there is a solver which together with thieen heuristics implements the
iterative forward search algorithm.

Moreover, there is a set of listeners which carrdggstered on various
levels (on a constraint, a variable, a model, &esobr a solution) and a plug-in
mechanism for solver extensions. Using these hoakisous extensions (as for
instance the conflict-based statistics or MAC) barimplemented.

A.1 Solver

As described in the chapter 4, the solver repeateelects a variable, a
value, assigns the value to the variable and cheblsher the solution is the best
ever found until a termination condition succeédse implementation is in class
Solver which can be found in the package ifs.sol\ollowing Figure 4.1
presents its core functionality.

cl ass Solver {
/ltermination condition
TerminationCondition iTerminationCondition;
/Ivariable selection
VariableSelection iVariableSelection;
/Ivalue selection
ValueSelection iValueSelection;
/[solution comparator
SolutionComparator iSolutionComparator;

(continues on the next page)
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Solution solve(Model model) {
Solution solution = model.createlnitialSolution 0;

/lwhile not terminated
whi | e (iTerminationCondition. canContinue (solution)) {

/Iselect variable
Variable variable =

iVariableSelection. selectVariable (solution);

/Iselect value
Value value =

iValueSelection .selectValue (solution, variable);

/l(un)assign the selected value to the selected var iable
i f (value!l= null )

variable. assign (value);
el se

variable. unassign ();

/I if the solution is the best ever found then memo rize it
i f (iSolutionComparator. isBetterThanBest (solution))
solution. saveBest ();

} /lend while

/Irestore the best ever found solution
solution. restoreBest  ();

r et ur n solution;

}

Fig. A.1.Core of the IFS solver (class ifs.solver.Solver)

Solution class contains some information about sb&ition and the
functions for storing and restoring the best eventl solution.

cl ass Solution {

publ i ¢ | ong getlteration(); /[current iteration
publ i ¢ doubl e getTime(); /lcurrent solution time
publ i ¢ Model getModel(); /Imodel

//store and restore the best solution
public voi d saveBest() { getModel().saveBest(); }
publ i c void restoreBest() { getModel().restoreBest(); }
}

Fig. A.2.Core of the solution (class ifs.solver.Solution)
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A.2 Mod€

The model, which is implemented by class Model kpge ifs.model)
contains all the variables and constraints in theblem. Moreover, it contains
some useful functions which can be used for ingdncthe heuristics. The most
interesting is the functiooonflictValueswhich returns all the values which are
assigned and which are in a hard conflict with gineen value. This means the
values which have to be unassigned if the giveruevak selected for the
assignment.

cl ass Model {
[Ivariables
publ i ¢ Vector variables();
publ i c voi d addVariable(Variable variable);
publ i c voi d removeVariable(Variable variable);

/[constraints
publ i ¢ Vector constraints();
publ i ¢ voi d addConstraint(Constraint constraint);
publ i ¢ voi d removeConstraint(Constraint constraint);

publ i ¢ Set conflictValues(Value value) {
HashSet conflictValues = new HashSet();
for (Enumeratione =value.variable().constraints().elements();
e.hasMoreElements();) {
Constraint ¢ = (Constraint)e.nextElemen t();
c.computeConflicts(value, conflictValue s);

}

r et ur n conflictValues;

voi d saveBest() {
for (lterator i = iVariables.iterator(); i.hasNext(); ) {
Variable variable = (Variable)i.next();
variable.iBestAssignment = variable.iAssignme nt;

}

voi d restoreBest() {
for (Iterator i = iVariables.iterator(); i.hasNext(); ) {
Variable variable = (Variable)i.next();
variable.iAssignment = variable.iBestAssignme nt;

}

Fig. A.3.Core of the model (class ifs.model.Model)
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A.2.1 Variables

The Variable class (package ifs.model) is an atistraplementation of a
variable. Every variable can contain an assignédeydhe initial assignment (in
case of minimal perturbation problem) and the leest found assignment. Also,
it keeps track of the constraints in which the ahle participates. The most

interesting functions ar@ssignandunassignwhich assign and unassign a value to
the variable.

cl ass Variable {

Value iAssignment = null; /lassigned value

Value ilnitialAssignment = null; /finitial value (MPP)

Value iBestAssignment = null; /Ibest assignment value
Collection iConstraints; /lconstraints which contain this variable

Collection getValues () {
/lto be implemented: variable’s domain

voi d unassign () {
Value oldValue = iAssignment;

iAssignment = nul | ;
f or (Iterator i = iConstraints.iterator(); i.nasNext() D4
Constraint constraint = (Constraint)i.next();
constraint. unassigned ('t hi s, oldValue);
}
}
voi d assign(Value value) {
i f (IAssignment != nul 1) unassign ();
iAssignment = value;
f or (lterator i = iConstraints.iterator(); i.hasNext() 0 {
Constraint constraint = (Constraint)i.next();
constraint. assigned (thi s, oldVvalue);
}
}

}

Fig. A.4.Core of a variable (class ifs.model.Variable)

A.2.2 Values

There is also an abstract class which implemensingle value, class
Value (package ifs.model). The most interestingprty is that each value knows
about the variable to which it belongs. Also, thexe method which compares
two values. For general implementation of optimatheuristics, every value
can be converted to integer (functitwint). Of course, there can be made more
dedicated, problem dependent heuristics which take account a possible
complexity of the value, if needed.
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cl ass Value {
publ i ¢ Variable variable();
publ i ¢ voi d setVariable(Variable variable);

publ i ¢ voi d assigned( | ong iteration);
publ i ¢ voi d unassigned( | ong iteration);

publ i ¢ bool ean valueEquals(Value value);
public int tolnt();

Fig. A.5.Core of a value (class ifs.model.Value)

A.2.3 Constraints

As indicated in chapter 4, the most important fiorcof every constraint
is the computation of the conflicts which will teelected value cause if assigned
(method computeConflics Also, it is up to a constraint to unassign the
conflicting variables caused by the constraint wiiare is a value assigned to a
variable (methodassignedl It also keeps track of what variables are inedivin
the constraint.

cl ass Constraint {
publ i ¢ Vector variables();

voi d computeConflicts(Value value, Set conflicts) {
/lthis method needs to be implemented by all co nstraints!

}

voi d unassigned(Value value) {}

voi d assigned(Value value) {

Set conflicts = new HashSet();

computeConflicts(value, conflicts);

for (Iterator i = conflicts.iterator(); i.hasNe xt(); ) {
Value conflictingValue = (Value)i.next();
conflictingValue.variable().unassign();

}

}
}

Fig. A.6.Core of a constraint (class ifs.model.Constraint)

A.3 Heuristics

There are four interfaces (Figures A.7. — A.10J) iimplementing the
heuristics which guides the IFS solver. Namelyrehis the variable selection
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heuristics, the value selection heuristics, theutsmt comparator and the
termination condition.

publ i c interface VariableSelection {
publ i ¢ Variable selectVariable(Solution solution);
}

Fig. A.7.Variable selection (class ifs.heuristics.Variableggon)

public interface ValueSelection {
publ i ¢ Value selectValue(Solution solution,
Variable selectedVariable);

Fig. A.8.Value selection (class ifs.heuristics.ValueSelegtio

public interface SolutionComparator {
publ i ¢ bool ean isBetterThanBestSolution(Solution currentSolution)
}

Fig. A.9.Solution comparator (class ifs.solution.Solution@amnator)

publ i c interface TerminationCondition {
publ i ¢ bool ean canContinue(Solution currentSolution);
}

Fig. A.10.Termination condition(ifs.termination.Termination@btion)

In the following sections the general implementagioof the above
heuristics are discussed.

A.3.1 Variable Selection

The very basic (but sufficient for all the experimt® implementation of
the variable selection criterion picks an unassign&riable randomly. If there is
no unassigned variable, one of the assigned orsedasted.
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publ i ¢ cl ass GeneralVariableSelection i mpl ement s VariableSelection {

publ i ¢ Variable selectVariable(Solution solution) {

i f (!solution.getModel().unassignedVariables().isEmpt y0) {
r et ur n (Variable)ToolBox.random(
solution.getModel().unassigne dVariables());
} el se{
r et ur n (Variable)ToolBox.random(
solution.getModel().assignedV ariables());

Fig. A.11.General implementation of the variable selectioitecion
(class ifs.heuristics.GeneralVariableSelection)

A.3.2 Solution Compar ator

Current solution is better than the best ever fosoldtion if there is no
best solution yet saved or if it has lower numbleumassigned variables. If the
current solution has the same number of assignedbles as the best ever found
solution, the better solution has the lowest sunthef assigned values (method
model.getTotalValusumsvalue.tolnt()over all assigned values). There is also a
general solution comparator which takes the nurobeerturbations into account
for the minimal perturbation problem (ifs.solutitPPSolutionComparator).

publ i c cl ass GeneralSolutionComparator
i mpl ement s SolutionComparator {

publ i ¢ bool ean isBetterThanBestSolution(Solution solution) {
i f (solution.getBestinfo()== nul 1) {
[lthere is no best solution yet saved
r et urn true;
}

i nt currentUnassigned =
solution.getModel().unassignedVariab les().size();
i nt bestUnassigned =
solution.getModel().getBestUnassigne dVariables();
i f (bestUnassigned != currentUnassigned) {
r et ur n bestUnassigned > unassigned,;

i nt curentValue = solution.getModel().getTotalValue();
i nt bestValue = solution.getBestValue();
r et ur n currentValue < bestValue;

Fig. A.12.General implementation of the solution comparatdags
ifs.solution.GeneralSolutionComparator)

- 103 -



A.3.3 Termination Condition

The solver should stop when there is a completatisal found (e.qg., if
there is no optimisation involved) or when the giveumber of iterations or
timeout is reached. There is also a general impiatien which takes into
account the minimal number of perturbations in catesolving the minimal
perturbation problem (class ifs.termination.MPPTieationCondition).

publ i ¢ cl ass GeneralTerminationCondition
i mpl ement s TerminationCondition {
private int iMaxlter;
private doubl e iTimeOut;
private bool ean iStopWhenComplete;

publ i ¢ bool ean canContinue(Solution currentSolution) {
i f (iIMaxlter>=0 && currentSolution.getlteration()>=iM axlter) {
/IMaximum number of iteration reached.
r et ur n false;

i f (iTimeOut>=0 && currentSolution.getTime()>iTimeOut ){
/I Timeout reached.
r et ur n false;

}
i f (iIStopWhenComplete) {
bool ean ret = (IcurrentSolution.getModel().
unassignedVariables().isE mpty());
//Complete solution found.
return ret;
}

r et ur n true;

Fig. A.13.General implementation of the termination condit{olass
ifs.termination.GeneralTerminationCondition)

A.3.4 Value Sdlection

General implementation of value selection critei®quite complicated. It
covers several basic heuristics (random-walk, CaBy-search, MAC). Also it
works for the initial as well as minimal perturlzatiproblem.
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publ i ¢ cl ass GeneralValueSelection i mpl erent s ValueSelection {

/Irandom walk selection
doubl e iRandomWalkProb = 0.0;

/lweight of a conflict
doubl e iWeightCoflicts = 1.0;
/lweight of a value (value.tolnt())
doubl e iWeightValue = 0.0;

/ITABU-SEARCH: size of tabu-list
i nt iTabuSize = 0;

/ITABU-SEARCH: tabu-list

ArrayList iTabu = null;

/ITABU-SEARCH: pointer to the last value in the t
i nt iTabuPos = 0;

//Minimal perturbations problem
bool ean iIMPP = fal se;
/IMPP: initial selection probability
doubl e ilnitialSelectionProb = 0.0;
/IMPP: limit on the number of perturbations
i nt iIMPPLimit = -1;
/IMPP: weight of the difference in initial assignme
doubl e iWeightDeltalnitialAssignment = 0.0;

/IConflict based statistics (null if not present)
ConflictStatistics iStat = null;
//CBS: CBS weighted conflict weight

doubl e iWeightWeightedCoflicts = 0.0;

/IMAC: null if there is no arc-consistency

MacPropagation iProp = nul | ;
/IMAC: allow selection of removed values (MAC+)
bool ean iAllowNoGood = fal se;

publ i ¢ Value selectValue(Solution solution,
Variable selectedVariable) {

i f (IMPP && selectedVariable.getlnitialAssignment() !=
/IMinimal perturbations problem
i f (solution.getModel().unassignedVariables().isEmpty(
/lcomplete solution — decrease MPP limit if
i f (solution.getModel().perturbVariables().size() <=

iMPPLimit =
solution.getModel().perturbVariables()
}

i f (iIMPPLimit >=0 &&
solution.getModel().perturbVariables().size
/IMPP limit reached — initial value has to
r et ur n selectedVariable.getlnitialAssignment();

if (ToolBox.random() <= ilnitialSelectionProb) {
/Iwith the given probability, initial value
return selectedVariable.getlnitialAssignment();

}
} /IMPP

abu-list

nts

nul I'){

NA

used
iIMPPLimit) {

size() - 1;

() > IMPPLimit) {
be assigned

is selected

(continues on the next page)
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Vector values = selectedVariable.values();

i f (ToolBox.random() <= iRandomWalkProb) {
/Irandom-walk
return (Value)ToolBox.random(values);

}

i f (iProp !=null){
/IMAC: select one of the not-removed values (
Collection goodValues = iProp.goodValues(selectedVa
i f (‘goodValues.isEmpty())
values = new Vector(goodValues);
} el se if (liAllowNoGood) {
/lall values are removed and the selection
/Inot-removed values is prohibited

return null;
}
}
[/Ivalues with the lowest weighted sum
Vect or bestValues = nul | ;

doubl e bestWeightedSum = 0;

/lgo through all the values
f or (Enumeration i1 = values.elements();il.hasMoreElem
Value value = (Value)il.nextElement();
i f (iTabu !=null && iTabu.contains(value)) {
[Ivalue is in the tabu-list
conti nue;

i f (value.equals(selectedVariable.getAssignment())) {
//do not pick the same value as it is curre
/lif there is a value assigned to the selec
conti nue;

}

//conflicting values
Collection conf = solution.getModel().conflic

usually always)
riable);

of

ents();) {

ntly assigned
ted variable

tValues(value);

doubl e weightedConflicts = 0.0; /ICBS weighted conflicts

if (iStat!= nul 1) {
weightedConflicts = iStat.countRemovals(
solution.getlteration(

}

/IMPP: difference in initial assignments
| ong deltalnitialAssignments =0;
if (IMPP){

//go through all conflicts
for (Iterator itl = conf.iterator(); itl.hasNext();) {
Value aValue = (Value)itl.next();
i f (aValue.variable().getinitialAssignment() != null)
/Inot assigned to an initial value -> g
deltalnitialAssignments--;

}
}

),conf, value));

{

ood to unassign

(continues on the next page)
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i f (value.equals(selectedVariable.getlnitialAssignmen t() {
/Ivalue is different from initial value - > bad to assign
deltalnitialAssignments++;

i f (MPPLimit >= 0 &&

(solution.getModel().perturbVariables( ).size()
+ deltalnitialAssignments) > iMPPLi mit) {
/lassignment exceeds MPP limit
conti nue;
}
}

/lweighted sum of several criteria
doubl e weightedSum =
(iWeightDeltalnitialAssignment * deltalniti alAssignments)
+ (iWeightWeightedCoflicts * weightedConflict S)
+ (iWeightCoflicts * conf.size())
+ (iWeightValue * value.tolnt());

/Istore best values

i f (bestValues == nul | || bestWeightedSum > weightedSum) {
bestWeightedSum = weightedSum;
i f (bestValues == nul )
bestValues = new Vector();
el se

bestValues.clear();
bestValues.add(value);
} el se if (bestWeightedSum == weightedSum) {
bestValues.add(value);

i end of the for cycle over all values
Value selectedValue = (Value)ToolBox.random(bes tValues);
i f (selectedValue == nul 1'){
/Ino value in the bestValues -> select random ly

selectedValue = (Value)ToolBox.random(values);

}

//In case of tabu-search, put into tabu-list
i f (iTabu !=null) {
i f (iTabu.size() == iTabuPos)
iTabu.add(selectedValue);
el se
iTabu.set(iTabuPos, selectedValue);
iTabuPos = (iTabuPos + 1) % iTabuSize;
}

return selectedValue;

Fig. A.14.General implementation of the value selection dote
(class ifs.heuristics.GeneralValueSelection)
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Appendix B Examples

In this chapter, an implementation of Random Bin&$P using IFS
framework is presented. For more details or otleblpms discussed in chapter
6, consult the implementation or API (JavaDoc) doentation on the attached
CD-ROM. There are the following packages: ifs.exEngsp (Random Binary
CSP), ifs.example.rpp (Random Placement Problem) tteolver (Purdue
University Timetabling Problem).

B.1 Random Binary CSP

First of all, we need to define a variable and lae&aThe only thing which
needs to be implemented is the domain of a vari@@ecomputeValuesnethod
in the Figure B.1.). Note that the following examps complete and it was not
simplified, there is nothing more to be written he able to execute IFS on
random binary CSPs.

public class CSPVariable ext ends ifs.model.Variable {
publ i c CSPVariable( i nt domainSize) {
super (nul I'); /Ino intial value
setValues(computeValues(domainSize));

publ i ¢ Vector computeValues( i nt domainSize) {
Vector values = new Vector();
for (int i=0; ixdomainSize; i++)
values.add( new CSPValue( thi s,i));
r et ur n values;
}

}

Fig. B.1.Definition of CSP variable (ifs.example.csp.CSP&/ale)

publ i c cl ass CSPValue ext ends ifs.model.Value {
publ i ¢ CSPValue(Variable variable, i nt value) {
super (variable, value);

Fig. B.2.Definition of CSP value (ifs.example.csp.CSPValue)
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Next, we need to define binary constraints betw€8® variables. Array
ilsConsistentis used for memorizing what pairs of values arengatible, the
methodinit generates these compatible pairs. The meg©dnsistenthecks the
consistency of a pair of given values (note thategds to take the values in the
correct order). MethoccomputeConflictschecks whether the other assigned
variable (diferent from the one which is going te bssigned) has a value
compatible with the selected value.

publ i ¢ cl ass CSPBinaryConstraint ext ends ifs.model.BinaryConstraint{
bool ean ilsConsistent([][] = nul | ;
i nt iINrCompatiblePairs;

publ i ¢ CSPBinaryConstraint( i nt nrCompatiblePairs) {
iNrCompatiblePairs = nrCompatiblePairs;

}
voi d swap( i nt [][] allPairs, i nt first, i nt second) {

i nt[] a = allPairsfirst];
allPairs[first] = allPairs[second];
allPairs[second] = a;

}

publ i ¢ voi d inittRandom rndNumGen) {
i nt numberOfAllPairs =

first().values().size() * second().values().s ize();
i nt ][] allPairs = new i nt [numberOfAllPairs][];
int idx =0;

ilsConsistent =
new bool eanf(first().values().size()][second().values().size()] ;

f or (Enumeration i1=first().values().elements();
i1l.hasMoreElements();) {
CSPValue v1 = (CSPValue)il.nextElement();
f or (Enumeration i2=second().values().elements();
i2.hasMoreElements();) {
CSPValue v2 = (CSPValue)i2.nextElement();
ilsConsistent[v1.tolnt()][v2.toInt()] = fal se;
allPairs[idx++] = new i nt [] {vi.toInt(), v2.tolnt()};

}
}

for (int i=0; i<iNrCompatiblePairs; i++) {
swap(allPairs, i,
i+( i nt )(rndNumGen.nextDouble()*(numberOfAllPairs-i)));
ilsConsistent[allPairs[i][0]][allPairs[i][1]] = true;
}
}

(continues on the next page)
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publ i ¢ bool ean isConsistent(Value valuel, Value value2) {
i f (valuel== null || value2== null) return true;
i f (isFirst(valuel.variable())) {
r et ur n ilsConsistent[valuel.tolnt()][value2.tolnt()];
} el se{
r et ur n ilsConsistent[value2.tolnt()][valuel.toint()];
}
}
publ i ¢ voi d computeConflicts(Value selectedValue, Set conflict s) {
i f (isFirst(selectedValue.variable())) {
i f (lisConsistent(selectedValue, second().getAssignme nt()))
conflicts.add(second().getAssignment());
} el se{
i f (lisConsistent(selectedValue, first().getAssignmen t()))
conflicts.add(first().getAssignment());
}
}
}

Fig. B.3.Definition of CSP constrain (ifs.example.csp.CSRBBiGonstraint)

Next, we need to implement the model (see Figu#de)BThe binary CSP
iIs generated according to the given parametenst Bf all, variables and
constraints are generated and added into the miNé&t, the constraint graph is
constructed and constraints are initialized.

public cl ass CSPModel extends ifs.model.Model {
publ i ¢ CSPModel( i nt nrVariables, i nt nrValues, i nt nrConstraints,
i nt nrCompatiblePairs, | ong seed) {
generate(nrVariables, nrValues, nrConstraints,
nrCompatiblePairs, seed);

voi d swap(Variable[][] allPairs, i nt first, i nt second) {
Variable[] a = allPairsf[first];

allPairs[first]=allPairs[second];

allPairs[second]=a;

publ i c voi d generate( i nt nrVariables, i nt nrValues,
i nt nrConstraints, i nt nrCompatiblePairs, | ong seed) {

Random rnd = new Random(seed);

for (int i=0; i<nrVariables; i++) {
CSPVariable var = new CSPVariable(nrValues);
addVariable(var);

}

(continues on the next page)
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for (int i=0; i<nrConstraints; i++) {
CSPBinaryConstraint ¢ =
new CSPBinaryConstraint(nrCompatiblePairs);

addConstraint(c);
}
i nt numberOfAllPairs =
variables().size()*(variables().size 0-1)/2;
Variable[][] allPairs = new Variable[numberOfAllPairs][];
i nt idx=0;

f or (Enumeration il=variables().elements();
i1l.hasMoreElements();) {

Variable v1 = (Variable)il.nextElement();

f or (Enumeration i2=variables().elements();
i2.hasMoreElements();) {
Variable v2 = (Variable)i2.nextElement();
i f (vl.getld()>=v2.getld()) continue;

allPairs[idx++]=new Variable[] {v1,v2},

}

}

idx = 0;
f or (Enumeration il=constraints().elements();
i1.hasMoreElements();) {

CSPBinaryConstraint ¢ = (CSPBinaryConstraint) i1.nextElement();
swap(allPairs, idx,
idx+( i nt)(rnd.nextDouble()*(numberOfAllPairs-idx)));

c.addVariable(allPairs[idx][0]);
c.addVariable(allPairs[idx][1]);
c.init(rnd);

idx++;

Fig. B.4.Definition of CSP model (ifs.example.csp.CSPModel)

That's all. The following Figure B.5. presents aleavhich will execute
the IFS RW(2%) solver on the CSP(25,12,198/300485/problem. The best

solution found within 60 seconds is then printed.

public static voi d main(String[] args) {
i nt nrVariables = 25;
i nt nrValues = 12;
i nt nrConstraints = 198;
doubl e tigtness = 0.25;

i nt nrAllPairs = nrValues*nrValues;
i nt nrCompatiblePairs = (int)((1.0-tigtness)*nrAllPair s);
| ong seed = System.currentTimeMillis();

(continues on the next page)
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/[configuration
ifs.util. DataProperties cfg =
cfg.setProperty("Termination.Class",
"ifs.termination.GeneralTermin
cfg.setProperty("Termination.StopWhenComplete","t
cfg.setProperty("Termination. TimeOut","60");
cfg.setProperty("Comparator.Class",
"ifs.solution.GeneralSolu
cfg.setProperty("Value.Class",
"ifs.heuristics.General
cfg.setProperty("Value.WeightConflicts", "1");
cfg.setProperty(“Value.RandomWalkProb", "0.02");
cfg.setProperty("Variable.Class",
"ifs.heuristics.GeneralVar

/Isolver and model intialization
CSPModel model =
new CSPModel(nrVariables,nrValues,nrConstraints,
nrCompatiblePairs,seed);
ifs.solver.Solver solver =
solver.setlnitalSolution(model);

/Isolver execution

solver.start();
try{
solver.getSolverThread().join();

} cat ch (InterruptedException e) {}

/ltake the best ever found solution
ifs.solution.Solution solution = solver.lastSolut
solution.restoreBest();

/lprint some results
System.out.printin("Best solution found after "+
solution.getBestTime()+" seconds ("+
solution.getBestlteration()+" iterations).");
System.out.printin("Number of assigned variables
solution.getModel().assignedVariables().size(
System.out.printin("Total value of the solution i
solution.getModel().getTotalValue());
i nt idx=1;
f or (Enumeration e=solution.getModel().variables().ele
e.hasMoreElements();) {
CSPVariable v=(CSPVariable)e.nextElement();
i f (v.getAssignment()!= nul I')
System.out.printin(
"Var"+(idx++)+"="+v.getAssignment().

new ifs.solver.Solver(cfg);

new ifs.util.DataProperties();

ationCondition");
rue");

tionComparator");

ValueSelection");

iableSelection");

ion();

ments();

toint());

Fig. B.5.Example of solver execution (ifs.example.csp.Sihestg
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Appendix C  Simple Timetabling Problem

In [MulO1, MBO1, MBO02], we proposed a simplified o for timetabling
problems consisting of a set of resources, a sehabiities, and a set of
dependencies between the activities (see httpmtcuni.cz/~muller/ttbench/).
Time is divided into time slots with the same dimat Every slot may have
assigned a constraint, either hard or soft: a bangtraint indicates that the slot is
forbidden for any activity, a soft constraint inglies that the slot is discouraged.
We call these constraints “time preferences”. Evativity and every resource
may have assigned a set of time preferences, wimditate forbidden and
discouraged time slots.

Activity (which can be, for instance, directly mapped tdeeture) is
identified by its name. Every activity is describeylits duration (expressed as a
number of time slots), by time preferences, anatsgt of resources. This set of
resources determines which resources are requyethé activity. To model
alternative as well as required resources, we didlte set of resources into
several subsets — resource groups. Each groughés eonjunctive or disjunctive:
the conjunctive group of resources means that ¢heity needs all the resources
from the group, the disjunctive group means thatattivity needs exactly one of
the resources (we can choose from several alteesatiAn example can be a
lecture, which will take place in one of the possiblassrooms and it will be
taught for all of the selected classes. Note that do not need to model
conjunctive groups explicitly because we can usgetaof disjunctive groups
containing exactly one resource instead (the seteqtiired resources can be
described in a conjunctive normal form). Howevesage of both conjunctive and
disjunctive groups simplifies modelling for the tse

Resourceis also identified by its name and it is fully dabed by time
preferences. There is a hard condition that onky activity can use the resource
at the same time. For instance, such resourceeg@esent a teacher, a class, a
classroom, or another special resource at therketitmetabling problem.

Finally, we need a mechanism for defining and hagdldirect
dependencies between the activities. It seems carifi to use binary
dependencies only that define relationship betweenactivities. In [MB01], we
defined three temporal constraints: the activitysties before another activity, the
activity finishes exactly at the time when the setactivity starts, and two
activities run concurrently (they have the samd stae).

The solution of the problem defined by the abovedehas a timetable
where every scheduled activity has assigned it$ stae and a set of reserved
resources that are needed for its execution (theitgds allocated to respective
slots of the reserved resources). This timetablestnsatisfy all the hard
constraints, namely:
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« every scheduled activity has all the required resesireserved, i.e., all
resources from the conjunctive groups and one resoffom each
disjunctive group of resources,

+ two scheduled activities do not use the same resatrthe same time,
« no activity is scheduled into a time slot where #o#ivity or some of
its reserved resources has a hard constraint itintieepreferences,

» all dependencies between the scheduled activiteesatisfied.

Furthermore, we want to minimize the number ofatetl soft constraints
in the time preferences of resources and actiyities the total number of used
slots that are discouraged over all resources etidtees.

In this section we present some results for the p&inTimetabling
Problem, achieved using randomly generated probleithsthe size of 20 classes,
rooms, and teachers and 10 slots per day (5 day®se problems have the
following properties:

« Randomly selected 5% of all slots for each resofotass, room,
teacher) and activity (lecture) are prohibited.

« 30% of all slots for each resource and activity amarked as
discouraged.

« Moreover, there are 50 binary precedence hard @n&t between
lectures.

« The average length of an activity is about 2.5 tgiogs.

« Every activity has associated a class and a teammeéra randomly
selected set of available rooms (with the size fioto 10).

« There exists a complete feasible timetable.

The objective here is to find a complete feasilieetable which meets all
the hard constraints and which minimizes the nundbetiscouraged time slots.
See [Mul01] for more details about the problem gatue.

The problem is modelled in such a way that evetjule is represented by
a variable, a resource as a constraint and evessilje location of an activity in
the time and space is represented by a single .viilugeans that a value stands
for a selection of the time (starting time slothdaone of the available rooms.
Binary dependencies are of course representedrestramts as well. As for the
solver, exactly the same procedures are used a®ighted CSP, but now the
weight of a value represents the number of disgmddime slots it uses.

Figures C.1 and C.2 present the number of assigeetdres (in the
percentage of all lectures) and solution qualitynfber of occupied discouraged
time slots) wrt. the fill factor (average usageclafsses, rooms and teachers). The
average values of the best achieved solutions t@muns on different problem
instances within the 5 minute time limit are praedn

Both IFS MAC and IFS MAC+ were not able to find anplete solution
even for 50% filling of the timetable within thevgh 5 minute time limit. IFS
MAC was able to assign in average about 64% oValiables and IFS MAC+
about 80% of variables.
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Fig. C.1.Number of assigned lectures.
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Fig. C.2.Solution quality (the total number of used discaas time
slots, lower number of these slots means bettetisa).

IFS CBS was able to give us a complete solutionoup3% filling of the
timetable in every run. Moreover, it was able tmfmuch better solutions in the
number of used discouraged time slots than allrddsted algorithms.
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C.1 Timetabling Problem at Charles University

For solving a real-life timetable problem at theclH&y of Mathematics
and Physics at Charles University, Prague we egtkntie above discussed
simple timetabling problem.

M oddl

First, let us look at the traditional classroom aafy constraint. We are
scheduling lectures and we know in advance how nsamgents will attend the
lectures (with the exception of alternative lectyrgee below). Thus, the capacity
restriction is naturally modelled by assigning oty classrooms with enough
capacity to the lecture. Note that there are gradi@dternative resources attached
to each lecture, so the group describing the aasss contains only the
classrooms with enough capacity.

Second, we should be able to model alternativeviies per resources
(not only alternative resources per activity). lartcular, we have several
alternative lectures and several classes (groupstudents) that should attend the
lecture independently of which particular one. Ehefternative lectures can be
taught simultaneously by different teachers inadtdht classrooms or one teacher
has these lectures at different times etc. We wanhaximise the number of
available alternatives for the students under @& ltonstraint that at least one
alternative must be available for each class.

To describe alternative activities, we introducecheav entity into our
model,a group of alternative activitieshis group is assigned to some resources
with the following constraints:

« each resource to which the group of alternativéviiess is assigned
must have at least one free slot to which someigcfrom the group
of alternative activities can be allocated (a hadstraint),

- the number of available alternative activities dtirresources that have
assigned a group of alternative activities shoukl fmaximised
(modelled as a soft constraint).

Note that we are working with partial timetables vasll, so the above hard
constraint is relevant only to schedules wherehalactivities from the group of
alternative activities are allocated (no look ah#egte). Also notice that we are
encoding the objective function using soft consitisgiin particular this objective
function is encoded in location selection heurisiat minimises the number of
violations of soft constraints (see bellow).

The next group of hard constraints is derived frtdme organisation
structure of the faculty. The lectures are taughthree different buildings in
Prague so if there are two lectures taught in @ffe buildings and sharing either
a teacher or a class then there must be enough tbmaove between the
buildings. In particular, there must be at least tme slot between the lectures or
the lectures are taught in the same building. Meggowe prefer the lectures to be
taught in the same building where the teacher m®rmher office. Finally, the
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number of crossovers between the buildings dutegday should be minimised
both for classes and for teachers.

The last group of constraints concerns the timéepeaces. Some subjects
have more lectures per week. In such a case, therés must be scheduled to
different days. Note that such a constraint capdsmly described using the direct
dependency between the lectures. Each class smmildhave more than ten
teaching hours per day and more than six hoursowita break. Similarly, each
teacher should have neither more than eight hamrslgy nor more than six hours
without a break. Finally, there is a preferencelagtime. For example, the early
morning hours or late evening hours are less pederAlso Friday afternoon is
not preferred. These preferences are describecasiber (from least preferred -
3 to most preferred 3) for each time slot in thekvaVe call this number a global
time preference. The last time constraint, whichvésy weak, says that the
number of breaks (free slots between the lectuseslay) should be minimal both
for teachers and for students.

Let us now summarise all the additional constraie can divide them
into hard constraints that must be satisfied arftl mnstraints expressing the
preferences. The additional hard constraints are:

+ two (not alternative) lectures of the same subgacinot be taught on
the same day,

+ the capacity of each classroom cannot be exceeded,

« each student (that has to attend some lectureghware alternative)
must have possibility to attend at least one ofalkernative lectures,

- there is at least one hour (slot) break betweernyeaws lectures which
go one after another, and that share either the $aacher or the class
and that are taught in different buildings.

The additional soft constraints are:

« one student should not have more than ten hoursigeand should
not have more than six hours without a break,

« one teacher should not have more than eight harsglgy and should
not have more than six hours without a break,

« the number of crossovers during a day for teachedsclasses should
be minimal,

« a lecture should be taught in the same buildingrevtiee teacher has
his or her workplace

« maximise the number of alternatives which studeatsattend,

+ maximise the sum of used time slots multiplied bg global time
preference of each slot,

« minimise the number of free slots between the &rst the last lecture
of the day for all teachers and classes.
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Results

The above described problem was tested using atalfcbm an Fall 2001
semester at the Faculty of Mathematics and Physibsrles University (see
Figure C.3). The problem size and structure wéslkswvs:

« 5 days per week, 15 time slots per day,

« 746 lectures, which have to be centrally scheduyledh average
duration 2.03 time slots, teaching hour = 45 migytén total 1512
timeslots,

« 349 classes or sub-classes (454 groups of classes),

+ 479 teachers,

« 41 classrooms (but only 30 can be used),

« 3 different locations (buildings).

It takes approximately 2 to 4 minutes to solve gneblem without any user
intervention. Moreover, the system provides intevaccapabilities, so the user
can easily adjust the timetable, e.g. via the @radydrop technique. This way the
user can guide the system or he or she can expoess preferences that can be
hardly encoded in the soft constraints. The follayiist shows some features of
the timetable found by the system (with no usegriréntion):

+ all activities were scheduled (and all hard comstsavere satisfied),

« there were 76 crossovers for the classes and &awerss for the
teachers (crossover means change of building darohay),

« there were only 21 cases when a class had morelthdours a day
and one case when a class had more than 6 hoinsuiva break,

« there was no case when a teacher had more thamr8 &daay or more
than 6 hours without a break,

« aclass could attend on average 84% of altern&iteres announced
for it,

« on average 84% of lectures were scheduled to tihe sailding where
the teacher has his office,

« 74% of lectures were scheduled between 3rd and sléti{from 9:00
till 16:25), on Fridays between 3rd and 6td slodrf 9:00 till 12:15);

+  87% of lectures were scheduled between 2nd — 1@tlfsom 8:10 till
17:15), on Fridays between 2nd — 7th slot (fronD8ill 13:05);

« only 3% of lectures were scheduled on or after Hibh (from 18:10)
and on or after 10th slot (from 14:50) on Fridays
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3 School Tinotablo [t

[ School Timotablo_[nif.sha)

[Resaurces | Lectues |Timetable |
ol imetable | Timetable of nhidual resources | Rules |
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Fig. C.3.The system generates compact timetables: a tineetabh
class (left), a timetable for a classroom (right)
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Appendix D CD-ROM Content

This thesis includes a CD-ROM with electronic fowh this thesis,
implemented program, program documentation andcsoepodes and several
examples.

Folder or file Content

\www\index.html CD-ROM content

\www\publications.html | List of publications

\doc\phd-thesis05.pdf This PhD thesis in PDF format

\doc\cv.pdf Curriculum Vitae

\doc\*.pdf Other publications

\src\ifs Source code of the implemented IFS program

\src\ttsolver Source code of the Purdue Univer3ityetabling
program

\data\purdue Example input data for Purdue Uniméfabling

\data\purdue\solution Example solutions to Purdogz Ul'imetabling

\data\rpp Example input data for Random Placemestil®mn

\data\rpp-mpp Example input data for RPP (minin@at.prersion)

\dataltt Timetabling problem from [Mul01,MB01,MBO02]
(called Simple Timetabling Problem)

\doc\api\index.html JavaDoc (source code) docuntiemia

\lib Compiled program

\bin Example scripts

\cfg Example configurations

\extra Bonus: interactive timetabling program frommy
master thessis

\tools JDK 1.5.0, Apache Ant 1.6.2

Fig. D.1.Included CD-ROM Content

Note that the result of this thesis is not a progmeith a fancy graphical
user interface solving a particular timetablinglpeon, but a Java library that is
capable of solving various CSP, CSOP, MPP and Mp@Blems. Some of such
problems (the ones that are discussed in the prewibapters) are implemented
and available on the CD-ROM.

Due to some technical as well as legal issues sted possible to put the
graphical user interface for Purdue Timetablingoiam on the CD-ROM.

For more details, see the documentation on thechath CD-ROM
(starting from \www\index.html).
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