

Charles University in Prague

Faculty of Mathematics and Physics

Constraint-based Timetabling
Ph.D. Thesis

Prague, 2005 Tomáš Müller

 - i -

 - ii -

Acknowledgements
Many thanks to Doc. RNDr. Roman Barták, PhD. for patient and

systematic guidance in creation of this Ph.D. thesis.

Declaration

I declare that this thesis was composed by myself, and all presented results

are my own, unless otherwise stated.

Tomáš Müller

 - iii -

1. Introduction...1

2. Overview ..3
2.1. Constraint Satisfaction Problem ...4

2.2. Minimal Perturbation Problem ...7
2.2.1. A Formal Model ...8

2.3. Optimisation Problems..10

3. Timetabling..13
3.1. Academic Timetabling Problems..15

3.2. Course Timetabling...16
3.2.1. Basic Search Problem ..17

Reduction to Graph Colouring...18
3.3. Approaches to Automated Timetabling ..18
3.3.1. Sequential Methods..19
3.3.2. Cluster Methods ...19
3.3.3. Constraint Based Approaches ..19
3.3.4. Meta-heuristic Methods ...19

3.4. Purdue Timetabling Problem ..20
Problem Representation...21
Additional Constraints ...22

4. Iterative Forward Search Algorithm ..25
4.1. Related Works...25
4.1.1. Local Search Approaches...26

Hill-climbing Algorithm...26
Min-conflict Algorithm...26
Min-conflict Random Walk Algorithm ...26
Tabu Search Algorithm ..27

4.1.2. Hybrid Approaches ..27
Decision Repair Algorithm ..27
Constrained Local Search Algorithm...28
Constructive Backtracking-free Algorithm ..29

4.2. Iterative Forward Search Algorithm ...31
Formalization...32

4.2.1. Termination Condition ...33
4.2.2. Solution Comparator ..33
4.2.3. Variable Selection ..34
4.2.4. Value Selection ..34
4.2.5. Conflicting Assignments..35

4.3. IFS for Minimal Perturbation Problem...38

4.4. Summary ...39

5. IFS Extensions...40

 - iv -

5.1. Conflict-based Statistics..40
5.1.1. Related Works..40
5.1.2. General Conflict-based Statistics ...41
5.1.3. Conflict-based Statistics in Iterative Forward Search........................42

Space Complexity ...43
Extensions ..44

5.1.4. Conflict-based Statistics in Local Search...44

5.2. Maintaining Arc Consistency ...47
5.2.1. Related Works..47
5.2.2. IFS with MAC..48

5.3. IFS as Dynamic Backtracking with MAC ..53
5.3.1. Related Works..53
5.3.2. IFS as Dynamic Backtracking with MAC ...55

5.4. Summary ...56

6. Experimental Results..57
Variations of IFS ..57

6.1. Binary Random CSP...60
Weighted Random Binary CSP (minCSP)..62
Local Search...63
Weighted Random Binary CSP (minCSP)..66

6.2. Random Placement Problem...69
6.2.1. Initial Problem..69
6.2.2. Minimal Perturbation Problem...71

6.3. Purdue Timetabling Problem ..73
Student Scheduling ...74
Search Algorithm ...75

6.3.1. Initial Problem..78
Comparison with manual solution ...82

6.3.2. Minimal Perturbation Problem...83
Perturbations in practise..86

6.3.3. Summary ..87

6.4. Summary ...87

7. Conclusion ...89

8. Bibliography ..90

Appendix A IFS Framework ...97
A.1 Solver ..97

A.2 Model ..99
A.2.1 Variables ..100
A.2.2 Values...100
A.2.3 Constraints..101

 - v -

A.3 Heuristics ..101
A.3.1 Variable Selection ..102
A.3.2 Solution Comparator ..103
A.3.3 Termination Condition ...104
A.3.4 Value Selection ..104

Appendix B Examples ..108
B.1 Random Binary CSP...108

Appendix C Simple Timetabling Problem ...113
C.1 Timetabling Problem at Charles University ...116

Model..116
Results ..118

Appendix D CD-ROM Content ...120

 - 1 -

1. Introduction

Constraint programming is a natural tool for describing as well as solving
a lot of problems from various areas. Its major advantage is its capability of
precise declarative description of a problem using relations between variables. It
is based on a strong theoretical basis and it has wide practical applications in areas
of evaluation, modelling, and optimisation.

Timetabling is one of the typical examples of constraint programming
application. The task is to allocate activities in time and space respecting various
constraints and to satisfy as nearly as possible a set of desirable objectives. A
typical constraint is the request that activities which are using the same resource
(e.g., a room, a machine, an operator, …) can not overlap in time or that a
resource is of a certain capacity, restricting e.g. how many activities can use it at
the same time. In addition, there are usually relations between activities and
constraints restricting what resources an activity should or can use.

There are a lot of timetabling problems from various areas, for example,
there is course, examination, transport, workforce, sport timetabling etc. In this
thesis we will concentrate on course timetabling.

There are two major objectives of this Ph.D. thesis: We would like to find,

describe and experimentally verify a constraint-based algorithm which is
applicable to course timetabling problems as well as to other constraint
satisfaction and optimisation problems. Moreover, with such an algorithm, we
would like to tackle a real-life large scale timetabling problem. The whole Ph.D.
work was motivated by this possibility to create an algorithm which is able to
solve a given real-life problem and which can produce a solution fully acceptable
by the users.

The thesis is organized as follows. In the following chapter, we give a

brief overview of the constraint satisfaction problem and of various approaches to
solving this problem. We also extend the traditional definition of the constraint
satisfaction problem into a minimal perturbation problem that is more suited for
dynamic problems. In such problems, changes in the problem definition are
occurring after a solution to the initial formulation has been reached. The minimal
perturbation problem incorporates these changes, along with the initial solution, as
a new problem whose solution must be as close as possible to the initial solution.

Chapter three briefly describes various timetabling problems. It also
defines the class timetabling problem at Purdue University. It is a real-life large
scale problem that includes features of over-constrained as well as optimisation
problems. The goal is to timetable more than 800 lectures to a limited number of

 - 2 -

lecture rooms (about 50) and to satisfy as many as possible individual course
requests of almost 30,000 students.

In the fourth chapter, the iterative forward search algorithm is presented to
solve both initial and minimal perturbation problems. This algorithm is close to
local search methods; however, it maintains partial feasible assignments as
opposed to the complete conflicting assignments characteristic of local search.
Similar to local search, it processes local changes in the assignment. This allows
us to generate a complete solution and to improve the quality of the assignment at
the same time.

Chapter five contains several extensions of the iterative forward search
algorithm. The most important, conflict-based statistics, is proposed to improve
the quality of the final solution. Conflicts during the search are memorized and
their potential repetition is minimized. In this chapter, we also present how this
conflict-based statistics can be used within a general local search algorithm.
Another presented extension allows the iterative forward search algorithm to
dynamically maintain arc consistency during the search. Finally, we also present
how to transform this algorithm into the dynamic backtracking algorithm.

In chapter six, various experiments with initial as well as minimal
perturbation problems are presented. The comparison is made on a random binary
constraint satisfaction problem, on a random placement problem and on the
timetabling problem of Purdue University from chapter three. It surveys various
settings of the algorithm, with and without its extensions. There is also a
comparison of iterative forward search algorithm with some other local search
algorithms and of the conflict-based statistics used within two basic local search
algorithms. Comparison of solutions given by the described algorithm with a
hand-made solution of class timetabling problem at Purdue University is also an
important part of this chapter.

Finally, chapter seven concludes the thesis and chapter eight contains the
bibliography. There are also four appendixes: Appendix A describes the
implementation of the iterative forward search algorithm in Java. Appendix B
contains an example how to solve random binary constraint satisfaction problems
with the presented algorithm. Appendix C presents another timetabling problem
we solved with the presented iterative forward search algorithm. Appendix D lists
the content of the attached CD-ROM.

 - 3 -

2. Overview

Many real-life industrial and engineering problems can be modelled as
finite constraint satisfaction problems (CSP) [Tsa93]. A CSP consists of a set of
variables associated with finite domains and a set of constraints restricting the
values that the variables can simultaneously take. In a complete solution of a CSP,
a value is assigned to every variable from the variable’s domain, in such a way
that every constraint is satisfied.

Most algorithms for solving CSPs search systematically through the
possible assignments of values to variables. Such algorithms are guaranteed to
find a solution, if one exists, or to prove that the problem has no solution. They
start from an empty solution (no variable is assigned) that is extended towards a
complete solution satisfying all the constraints in the problem. Backtracking
occurs when a dead-end is reached. The biggest problem of such backtrack-based
algorithms is that they typically make early mistakes in the search, i.e., a wrong
early assignment can cause a whole subtree to be explored with no success. There
are several ways of improving standard chronological backtracking. Look-back
enhancements exploit information about the search which has already been
performed, e.g., backmarking or backjumping [DF02]. Look-ahead enhancements
exploit information about the remaining search space via filtering techniques (e.g.,
via maintaining arc consistency described in [BR97, BR01]) or variable and value
ordering heuristics [MF00]. The last group of enhancements is trying to refine the
search tree during the search process, e.g., dynamic backtracking [Gin93].

Local search algorithms [MF00] (e.g., min-conflict [MJP92] or tabu search
[GH97]) perform an incomplete exploration of the search space by repairing an
infeasible complete assignment. Unlike systematic search algorithms, local search
algorithms move from one complete (but infeasible) assignment to another,
typically in a non-deterministic manner, guided by heuristics. In general, local
search algorithms are incomplete, they do not guarantee finding a complete
solution satisfying all the constraints. However, these algorithms may be far more
efficient (wrt. response time) than systematic ones in finding a solution. For
optimisation problems, they can reach a far better quality in a given time frame.

There are several other approaches which try to combine local search
methods together with backtracking based algorithms. For example, the decision
repair algorithm presented in [JL02] repeatedly extends a set of assignments
(called decisions) satisfying all the constraints, like in backtrack-based algorithms.
It performs a local search to repair these assignments when a dead-end is reached
(i.e., these decisions become inconsistent). After these decisions are repaired, the
construction of the solution continues to the next dead-end. A similar approach is
used in the algorithm presented in [Sch97] as well.

 - 4 -

2.1. Constraint Satisfaction Problem

Definition 2.1 (CSP). A constraint satisfaction problem (CSP) is a
triple Θ = (V,D,C), where

• V = {v 1,v2,…,vn} is a finite set of variables,
• D = {Dv1,Dv2,…,Dvn} is a set of domains (i.e., Dvi is a set of

possible values for the variable vi),
• C = {c1,c2,…,cm} is a finite set of constraints restricting the values

that the variables can simultaneously take.
Definition 2.2 (assignment). Let Θ be a CSP, an assignment of the

variables from V is η ⊆ {v/a|v∈V& a∈Dv} where ∀ v/a, w/b ∈ η
v = w ⇒ a = b. An element v/a of η means that variable v has
assigned value a. An assignment is complete iff |η| = |V| (i.e., all
variables are assigned).

Definition 2.3 (solution to CSP). A solution to the constraint
satisfaction problem Θ is a complete assignment σ of the variables
from V that satisfies all the constraints.

For many constraint satisfaction problems it is hard or even impossible to
find a solution in the above sense. For example, for over-constrained problems
[FW92], there does not exist any complete assignment satisfying all the
constraints. Therefore other definitions of problem solution like Partial Constraint
Satisfaction were introduced [FW92]. In papers [BMR03, BMR04], we proposed
a new view of the problem solution based on a new notion of maximal consistent
assignment. This approach is strongly motivated by the university timetabling
problem but we believe that it is generally applicable. The basic idea behind is to
assign as many variables as possible while still keeping the rest of the problem
“consistent”. It means that the user may later relax some constraints in the
problem (typically some of the constraints among the non-assigned variables that
cause conflicts) so that after this change the assignment can be extended to other
variables.

Formally, we define consistency of a problem Θ using the given
consistency technique ζ as follows:

Definition 2.4 (consistency technique). Consistency (or filtering)
technique ζ is a function that for the given CSP Θ = (V,D,C)
returns a new set of domains D’ = {D’v1,D’v2,…,D’vn}, where ∀i
D’v i ⊆ Dvi, so that the property of the consistency technique ζ
holds true for the CSP Θ’ = (V,D’,C). If the property cannot be
achieved on the problem Θ, consistency technique ζ returns fail.1

1 There exist some consistency techniques that do not fall into this scheme, for instance, path consistency

[MH86] where inconsistent pairs of values are filtered. But, these techniques are not much used in practical
applications.

 - 5 -

Definition 2.5 (consistency check). Consistency check ζ(Θ) is true if
and only if the consistency technique ζ deduces no failure on the
CSP Θ, otherwise, ζ(Θ) is false.

For instance, arc consistency (AC) technique removes values from variables’
domains that are inconsistent with constraints (see Definition 2.6).

Definition 2.6 (arc consistency). The pair of variables (vi,vj) is arc
consistent if and only if for every value x∈Dvi of variable vi which
satisfies the constraints on vi there is some value y∈Dvj of variable
vj such that the assignment σ = {v i/x, vj/y} is permitted by the
constraint between vi and vj.

Definition 2.7 (arc consistent problem) A given CSP Θ is arc
consistent if and only if every pair of variables (vi,vj) is arc
consistent.

We say that the constraint satisfaction problem is consistent if the
consistency technique deduces no failure (e.g., for arc consistency, the failure is
indicated by emptying some domain).

Definition 2.8 (consistency). A given CSP Θ is consistent respecting
consistency technique ζ if and only if the consistency check ζ(Θ)
is true.

Let Θ be a CSP and σ be a (partial) assignment of variables, then we
denote Θσ application of the assignment σ to the problem Θ, i.e., the domains of
the variables in σ are reduced to a singleton value defined by the assignment.

Definition 2.9 (application of the assignment σ to the problem Θ).
Θσ = (V,D’,C) is application of the (partial) assignment σ to the
problem Θ = (V,D,C) if and only if D’ = {D’v1,D’v2,…,D’vn}
where

• ∀i (∃a∈Dvi vi/a∈σ) ⇒ D’v i = {a}
• ∀i (¬∃a∈Dvi vi/a∈σ) ⇒ D’v i = Dvi
Definition 2.10 (consistent assignment). A partial assignment σ is

consistent respecting consistency technique ζ if and only if the
consistency check ζ(Θσ) is true, where Θσ is application of the
assignment σ to the problem Θ.

Note that a complete consistent assignment is a solution of the problem.
Note also that backtracking-based solving techniques typically extend a partial
consistent assignment towards a complete (consistent) assignment.

As we already mentioned, for some problems there does not exist any
complete consistent assignment; these problems are called over-constrained. In
such a case, we propose to look for the maximal consistent assignment.

 - 6 -

Definition 2.11 (maximal consistent assignment). A partial
assignment σ is maximal consistent assignment for a given CSP Θ
if there is no consistent assignment σ’ with a larger number of
assigned variables, i.e., |σ’|>|σ|.

We can also define a weaker version, so called locally maximal consistent
assignment.

Definition 2.12 (locally maximal consistent assignment). Locally
maximal consistent assignment σ is a consistent assignment that
cannot be extended to another variable(s). This means that there is
no σ’ ⊃ σ that is consistent.

Notice the difference between the above two notions. The maximal
consistent assignment is defined using the cardinality of the assignment (the
number of assigned variables) so it has a global meaning while the locally
maximal consistent assignment is defined using a subset relation, i.e., it is not
possible to assign an additional variable without getting inconsistency. It is pretty
easy (fast) to extend any consistent assignment to a locally maximal consistent
assignment. In fact, every branch of the search tree defines such a locally maximal
consistent assignment. Apparently, the maximal consistent assignment is the
largest (using cardinality) locally maximal consistent assignment.

Example (maximal consistent assignments):
Let V = {a,b,c,d,e} be a set of variables with domains D = {Da={1,2},

Db={1,2,3}, Dc={2,3}, Dd={2,3}, De={2,3}} and C = {a≠b, b≠c, c≠d, c≠e, d≠e}
be a set of constraints. Assume that we use arc consistency as the technique for
checking consistency of CSP Θ = (V,D,C). Then:

• σ = {a/1} is a locally maximal consistent assignment for Θ which is
not a maximal consistent assignment (|σ|=1),

• γ = {a/2, b/1} is a maximal consistent assignment for Θ (|γ|=2).

If a constraint satisfaction problem has a solution then any maximal
consistent assignment is the solution. Thus, looking for a maximal consistent
assignment is a general way of solving CSPs because it covers both standard
CSPs as well as over-constrained problems. Moreover, it is not necessary to know
in advance whether the problem is over-constrained or not. Still, it may be hard to
find a maximal consistent assignment for some problems. In such a case, we
propose to return the largest locally maximal consistent assignment that can be
found using given resources (e.g., time). This approach has a strong real-life
motivation, for example in timetabling and scheduling problems [MB02, RM03] it
means that the system allocates as many activities as possible in given time (and
no more activity can be allocated without a change of the current allocation).
Typically, the solving algorithms based on the above idea select some sub-space
of the solution space. For this sub-space, they find a maximal consistent

 - 7 -

assignment which is a locally maximal consistent assignment in the original
solution space. For example, the LAN search algorithm [VR02] restricts the
number of assignments tried per variable.

2.2. Minimal Perturbation Problem

Most existing solvers are designed for static problems. These problems can
be expressed, solved by appropriate means, and the solution applied without any
change to the problem statement. Many real-life problems [Koc02, VJ03, SW00,
Ian04], however, are subject to change. Additional input requirements produce a
new problem derived from the original problem. The dynamics of such a problem
may require changes during the solution process, or even after a solution is
generated. In many real situations, it is necessary to alter the solution process so
that the dynamic aspects of the problem definition are taken into account.

Problem changes may result from changes to environmental variables,
such as broken machines, delayed flights, or other unexpected events. Users may
also specify new properties based on the solution found so far. The goal is to find
an improved solution for the user. Naturally, the problem solving process should
continue as smoothly as possible after any change in the problem formulation. In
particular, the solution of the altered problem should not differ significantly from
the solution found for the original problem.

There are several reasons to keep a new solution as close as possible to the
existing solution. If the solution has already been published, such as the
assignment of gates to flights, frequent changes would confuse passengers.
Moreover, changes to a published solution may necessitate other changes if
initially satisfied wishes of users are violated. This may create an avalanche
reaction.

Dynamic problems appear frequently in real-life planning and scheduling
applications where the task is to “minimally reconfigure schedules in response to
a changing environment” [SW00]. Dynamic changes in the context of timetabling
problems have started to be studied at [EGJ03]. Issues of interactive timetabling
which needs to handle dynamic aspects of the problem were discussed in
[CDJD04, PMM04, MB02]. A survey of existing approaches to dynamic
scheduling can be found in [Koc02]. In an annotated bibliography on dynamic
constraint solving [VJ03], it is notable that only four papers were devoted to the
problem of minimal changes.

The minimal perturbation problem was described formally in [SW00] and
solved by a combination of linear and constraint programming as a 5-tuple Π =
(Θ, α, Cadd, Cdel, δ) where:

• Θ is a CSP (i.e., a triple (V,D,C), where V is a set of variables, D are
domains for V, and C is a set of constraints);

• α is a solution to Θ (i.e., a complete assignment satisfying the
constraints from C)

 - 8 -

• Cadd, Cdel are constraint removal and addition sets;
• δ is a function that measures the distance between two complete

assignments (perturbation).

A complete assignment β is a solution to Π iff it is a solution to CSP (V,
D, C*), where C* = (C\ Cdel)∪ Cadd), and δ(α,β) is minimal.

Notice that the above formulation of MPP is for hard CSPs where all the
constraints must be satisfied by a complete assignment of variables. Moreover, it
allows addition and retraction of constraints only so the set of variables is not
changing.

Our view of MPP differs from the above definition in several ways. First,
we formulate MPP for soft CSPs, i.e., the best incomplete assignments are
compared. Second, we allow more general changes in the problem formulation; in
particular both the set of constraints and the set of variables (together with
domains) can be changed. Last but not least, our definition of the function δ
measuring distance between assignments is more concrete in comparing
differences in the assignments.

2.2.1. A Formal Model
In papers [BMR03, BMR04], we presented a new formal model of the

minimal perturbation problem that is applicable to over-constrained problems as
well as to problems where finding a complete solution is hard. Recall that the idea
of MPP is to define a solution of the altered problem in such a way that this
solution is as close as possible to the (partial) solution of the original problem.

Definition 2.13 (MPP). A minimal perturbation problem (MPP) is
 quadruple Π = (Θ, Θ’, F, α), where:

• Θ, Θ’ are two CSPs called an initial problem and a changed
problem,

• F is a mapping of the variables from Θ to Θ’, and
• α is a (locally) maximal consistent assignment for Θ called initial

assignment.

The function F defines how the problem Θ is changed in terms of
variables. It is (almost) one-to-one mapping of the variables from Θ to the
variables from Θ’. For some variables v from Θ, the function F might not be
defined which means that the variable v is removed from the problem. However,
if the function F is defined then it is unique (it is a one-to-one mapping).

 - 9 -

Definition 2.14 (mapping of variables between problems). F is a
function of the variables from Θ = (V,D,C) to Θ’ = (V’,D’,C’) so
that

• domain of F: dom(F) ⊆ V
• range of F: rng(F) ⊆ V’
• ∀v,u∈dom(F) v≠u ⇒ F(v)≠F(u).

Also, for some variables v’ from Θ’, the origin might not be defined (i.e.,
there is no variable v such that F(v) = v’), which means that the variable v’ is
added to the problem. Notice also that the constraints and domains can be changed
arbitrarily when going from Θ to Θ’. We do not need to capture such changes
using the mapping functions like F because we are concerned primarily about the
variable assignments.

Definition 2.15 (distance set). Let σ be a (partial) assignment for
Θ = (V,D,C) and γ be a (partial) assignment for Θ’ = (V’,D’,C’).
Then we define WΠ(σ,γ) as a set of variables v from Θ such that
the assignment of v in σ is different from F(v) in γ, i.e.,

WΠ(σ,γ) = {v∈V | v/h∈σ & F(v)/h’∈γ & h≠h’}.
 We call WΠ(σ,γ) a distance set for σ and γ in Π and the elements

of the set are called perturbations.
Definition 2.16 (solution to MPP). A solution to the minimal

perturbation problem Π = (Θ, Θ’, F, α) is a (locally) maximal
consistent assignment β for Θ’ such that the size of the distance set
WΠ(α,β) is minimal.

The idea behind the solution of MPP is apparent – the task is to find the
best possible assignment of the variables for the new problem in such a way that it
differs minimally from the existing variable assignment of the initial problem.

Let us summarize now the two criteria used when solving MPP: the first
criterion is maximizing the number of assigned variables, the second criterion is
minimizing the number of perturbations between the resultant solution and the
previous (initial) solution. These criteria are combined lexicographically to get an
objective function.

Example:

Let α={a/1,b/3} be the initial solution of a CSP Θ with variables
V={a,b,c} and Θ’ be a new CSP with variables V’={b,c,d}, domains D’ =
{D b={1,3}, Dc={1,2,3}, Dd={2,3}}, and constraints C’={b≠c, c≠d, d≠b}. Assume
that there is a mapping F:{b→b, c→c} of variables from Θ to Θ’. Then the
problem Θ’ has the following solutions (maximal consistent assignments):

• β1 = {b/1,c/2,d/3} (WΠ(α,β1) = {b}),
• β2 = {b/1,c/3,d/2} (WΠ(α,β2) = {b}),
• β3 = {b/3,c/1,d/2} (WΠ(α,β3) = {}),

 - 10 -

but only the assignment β3 is a solution of MPP Π = (Θ, Θ’, F, α).

2.3. Optimisation Problems

In many real-life applications, we do not want to find any solution but a
good solution. The quality of a solution is usually measured by some application
dependent function called objective function. The goal is to find such solution that
satisfies all the constraints and minimise or maximise the objective function
respectively. Such problems are called Constraint Satisfaction Optimisation
Problems (CSOP).

Definition 2.17 (CSOP). A constraint satisfaction optimisation
problem (CSOP) is a quadruple Φ = (V,D,C, f) where (V,D,C) is a
standard CSP and f is an objective function which maps every
consistent (partial) assignment to a numeric value.

The task is to find such solution that is optimal regarding the objective
function f, i.e., it minimises or maximises the objective function.

Definition 2.18 (solution to CSOP). A solution to the constraint
satisfaction optimisation problem Φ = (V,D,C,f) is a (locally)
maximal consistent assignment σ for (V,D,C) such that the
objective function f(σ) is minimal (or maximal).

In order to find the optimal solution, we potentially need to explore all the
solutions of CSP and compare their values using the objective function. We
usually do not need to find the very best solution, but some good enough is
sufficient. So, for instance, we can look for a solution where the objective
function is below a given threshold.

The objective function is sometimes expressed using so called soft
constraints, which are very similar to standard constraints (called hard constraints
in optimisation problems), but they do not need to be necessarily satisfied. We are
looking for a solution where the number of violated soft constraints is minimal.
Also, these soft constraints can be of different weights, objective function is then
expressed for instance as a sum of weights of the violated soft constraints.

As for minimal perturbation problem, we define a function called

perturbation penalty, which represents the cost of the changes in the solution, i.e.,
the cost of the variables assigned to different values than the initial values.

Definition 2.19 (perturbation penalty). Let Π = (Θ, Θ’, F, α) be an
MPP. Perturbation penalty g is a function that maps a (partial)
assignment σ for Θ’ to a numeric value.

 - 11 -

In our work, we express this perturbation penalty as a sum of individual
costs of every variable vi that contains an initial value ai in its domain, but it is
assigned to a different value in the solution σ (i.e., F(vi) is assigned to a value
different from ai):

Definition 2.20 (perturbation penalty via non-initial assignment cost).
Let w(v,a,b) be a cost of the variable F(v) being assigned to value
b instead of a which is the initial assignment for variable v, i.e.,
v/a∈α, F(v)/b∈σ. Perturbation penalty is then

g(σ) = ∑{ w(v,a,b) | v∈WΠ(α,σ), v/a∈α, F(v)/b∈σ}

Formally, a minimal perturbation optimisation problem can be defined as
follows:

Definition 2.21 (MPOP). Minimal perturbation optimisation problem
is a 6-tuple Ψ = (Φ, Φ’, F, α, g, wg), where

• Φ=(V,D,C, f), Φ’=(V’, D’, C’, f’) are two CSOPs called an initial
optimisation problem and a changed optimisation problem,

• F is a mapping of the variables from Φ to Φ’,
• α is a (locally) maximal consistent assignment for Φ called initial

assignment,
• g is the perturbation penalty function that measures differences

between the initial assignment α and a consistent assignment of Φ’
• wg is a number between 0 and 1

We use value wg to compare importance of the objective function f’ of the
changed CSOP and the above discussed perturbation penalty:

Definition 2.22 (objective function for MPOP). Objective function h
for an MPOP Ψ = (Φ, Φ’, F, α, g, wg) where Φ’=(V’, D’, C’, f’),
is a function that maps every consistent (partial) assignment σ of a
CSP (V’,D’,C’) to a numeric value as follows:

h(σ) = (1-wg) f’ (σ) + wg g (σ)

Solution of an MPOP is then a (locally) maximal consistent assignment of
the changed problem that minimises the objective function.

Definition 2.23 (solution to MPOP). A solution to the minimal
perturbation optimisation problem Ψ = (Φ, Φ’, F, α, g, wg) where
Φ’=(V’, D’, C’, f’) is a (locally) maximal consistent assignment β
for the CSP (V’,D’,C’) such that the objective function h(β) from
Definition 2.22 is minimal.

 - 12 -

Note that the MPOP is an extension of MPP described in the above
chapter. We can, for instance, model MPP using MPOP if we ignore objective
function f’ (wg is set to 1) and if g(σ) = |WΠ(α,σ)|.

 - 13 -

3. Timetabling

Sometimes, the words schedule, sequence and timetable are loosely used
as if were synonymous. But, there can be certain distinctions between these terms
observed in the literature [Wer85, Wren96, BKJW97, AM99, Bar00, Koc02].

A timetable shows when particular events are to take place. It does not
necessarily imply an allocation of resources. Thus a published bus or train
timetable shows when journeys are to be made on a particular route or routes. It
does not tell us which vehicles or drivers are to be assigned to particular journeys.
The allocation of vehicles and drivers is part of the scheduling process. Although
timetabling is strictly the design of the pattern of journeys, this pattern may be
devised as part of a process which bears in mind whether it is likely that an
efficient schedule may be fitted to the resulting journey pattern.

In the rail domain, the term timetabling is often used to refer the
construction of a path (with times) for a train through a system. A class timetable
shows when particular events are to take place. In an infants’ school where a
single teacher is responsible for all the activities of a particular class, and where
these activities all take place in the same room, a timetable is nothing more than a
statement as to the times at which particular activities will take place. By contrast,
a university examination timetable will normally include room assignments drawn
up in the knowledge of group sizes and of special facilities needed. A university
class timetable has also to take into account the availability of individual lecturers.
The activities of drawing up examination and university class timetables may be
considered as scheduling activities.

A sequence is simply an order in which activities are carried out. For
example, the order in which jobs are processed through the machines of a factory,
if jobs pass through each machine in the same order, is a sequence. Sequencing
may take into account costs related to one particular job being followed by
another (e.g., machine conversion costs). The problem of sequencing jobs in these
circumstances is known as a flow shop problem.

A schedule will normally include all the special and temporal information
necessary for a process to be carried out. This will include times at which
activities are to take place, statements as to which resources will be assigned
where, and work plans for individual personnel or machines.

The goal of scheduling in its broadest sense is to solve practical problems
relating to the allocation, subject to constraints, of resources to objects being
placed in space-time, using or developing whatever tools may be appropriate. The
problems will often relate to the satisfaction of certain objectives.

A.Wren defines scheduling, timetabling, sequencing and rostering
[Wren96] as follows:

 - 14 -

Definition 3.1 (scheduling). Scheduling is the allocation, subject to
constraints, of resources to objects being placed in space-time, in
such a way as to minimise the total cost of some set of the
resources used.

Common examples of scheduling are transport scheduling or delivery
vehicle routing which seek to minimise the numbers of vehicles or drivers and
within that minimum to minimise the total cost. Another example is job shop
scheduling which may seek to minimise the number of time periods used, or some
physical resource.

Definition 3.2 (timetabling). Timetabling is the allocation, subject to
constraints, of given resources to objects being placed in
space-time, in such a way as to satisfy as nearly as possible a set of
desirable objectives.

Examples of timetabling are class and examination timetabling and some
forms of personnel allocation (e.g., manning of tools booths subject to a given
number of personnel).

Definition 3.3 (sequencing). Sequencing is the construction, subject to
constraints, of an order in which activities are to be carried out or
objects are to be placed in some representation of a solution.

Examples of sequencing are flow-shop scheduling and the travelling
salesman problem.

Definition 3.4 (rostering). Rostering is the placing, subject to
constraints, of resources into slots in a pattern. One may seek to
minimise some objective, or simply to obtain a feasible allocation.
Often the resources will rotate through a roster.

Some problems may fit to more than one of the above definitions, and the
terms tend to be used rather loosely in the workplace and in the scheduling
community.

In some of the above satisfying or to minimising was referred. It should be
remarked that many of these problems which we are treating do not have a well-
defined objective. We may sometimes justify the use of ameliorating or non-
optimising methods partly because different players will have different views of
the objective, but in reality such methods are often used simply because no
optimising (or exact) method is practicable.

Timetabling has long been known to belong to the class of problems called

NP-complete [CK96], i.e., no method of solving it in a reasonable (polynomial)
amount of time is known.

 - 15 -

3.1. Academic Timetabling Problems

There are three main classes of academic timetables [Sch99]:

• School Timetabling: The week scheduling for all the classes of an
elementary or a high school, avoiding teacher meeting two classes in
the same time, and vice versa;

• Course Timetabling: The week scheduling for all the lectures of a set
of university courses, minimizing the overlaps of lectures of courses
having common students;

• Exam Timetabling: The scheduling for the exams of a set of
university courses, avoiding to overlap exams of courses having
common students, and spreading the exams for the students as much as
possible.

The school timetable describes when each class has a particular lesson and

in which room it is to be held. The actual content of the timetable is largely driven
by the curriculum, the number of hours of each subject taught per week is often
set nationally. Each class consists of a set of pupils, who must be occupied from
the time they arrive until the time they leave school, and a specific teacher being
responsible for the class in any one period.

Teachers are usually allocated in advance of the timetabling process, so the
problem is to match up meetings of teachers with classes to particular time slots
so that each particular teacher meets every class he or she is required to.
Obviously each class or teacher may not be involved in more than one meeting at
a time. Often, it is required that each teacher has at least one morning or afternoon
free per week. Many other similar constraints may exist.

The (university) course timetabling problem consists in scheduling a set of

lectures for each course within a given number of rooms and time periods. The
main difference with the (high) school problem is that university courses can have
common students, whereas school classes are disjoint sets of students. If two
classes have common students then they conflict, and they cannot or should not be
scheduled at the same period. Moreover, school teachers always teach to more
than one class, whereas in universities, a professor may teach only one course. In
addition, in the university problem, availability of rooms (and their size and
equipment) plays an important role, whereas in the high school problem they are
often neglected because, in most cases, we can assume that each class has its own
room. We will discuss course timetabling in more detail in the following section
3.2.

The examination timetabling problem requires the teaching of a given

number of exams (usually one for each course) within a given amount of time.
The examination timetabling is similar to the course timetabling, and it is difficult
to make a clear distinction between the two problems. In fact, some specific

 - 16 -

problems can be formulated both as an examination timetabling problem and a
course timetabling one.

Nevertheless, it is possible to state some broadly-accepted differences
between the two problems. Examination timetabling has the following
characteristics (different from course timetabling problem) [Sch99]:

• There is only one exam for each subject.
• The conflicts condition is generally strict. In fact, we can accept that a

student is forced to skip a lecture due to overlapping, but not that a
student skips an exam.

• There are different types of constraints, e.g., at most one exam per day
for each student, and not too many consecutive exams for each student.

• The number of periods may vary, in contrast to course timetabling
where it is fixed.

• There can be more than one exam per room.

3.2. Course Timetabling

In this thesis, we will concentrate on university course timetabling
problems. These problems are subject to many constraints that are usually divided
into two categories: “hard” and “soft” [BKJW97].

Hard constraints are rigidly enforced. Examples of such constraints are:

• No resource (students or staff) can be demanded to be in more than one
place at any one time.

• For each time period there should be sufficient resources (e.g. rooms,
invigilators, etc) available for all the events that have been scheduled
for that time period.

Soft constraints are those that are desirable but not absolutely essential. In
real-world situations it is, of course, usually impossible to satisfy all soft
constraints. Examples of soft constraints are:

• Time assignment: a course may need to be scheduled in a particular
time period.

• Time constraints between events: one course may need to be scheduled
before/after the other.

• Spreading events out in time: students should not have lectures of the
same course in consecutive periods or on the same day.

• Coherence: professors may prefer to have all their lectures in a number
of days and to have a number of lecture-free days. These constraints
conflict with the constraints on spreading events out in time.

• Resource assignment: professors may prefer to teach in a particular
room or it may be the case that a particular exam must be scheduled in
a certain room.

 - 17 -

• Continuity: Any constraints whose main purpose is to ensure that
certain features of student timetables are constant or predictable. For
example, lectures for the same course should be scheduled in the same
room, or at the same time of day.

Moreover, usual course timetabling consists of many different departments
where each department offer a multitude of courses from which students are
required to take some and then may choose a number of others. In most cases,
each department is responsible for its own timetable and must try to take into
account the timetables of other departments.

3.2.1. Basic Search Problem
There are various definitions of the course timetabling problems. In

[Wer85, Sch99], course timetabling is defined as the following search problem:

Definition 3.5 (course timetabling). There are q courses K1,K2,…Kq,
and for each i, course Ki consists of ki lectures. There are r
curricula S1,S2,…Sr, which are groups of courses that have
common students. This means that courses in Sl must be scheduled
all at different times. The number of periods is p, and lk is the
maximum number of lectures that can be scheduled at period k
(i.e., the number of rooms available at period k). The formulation
is the following: find yik (∀ i = 1,…q; ∀ k = 1,…p) , so that

• ∀ i = 1,…q ∑{ yik | k = 1,…p} = ki
• ∀ k = 1,…p ∑{ yik | i = 1,…q} ≤ lk
• ∀ k = 1,…p ∀ l = 1,…r ∑{ yik | i ∈ Sl} ≤ 1
• ∀ i = 1,…q ∀ k = 1,…p yik ∈{0,1}
 where yik = 1 if a lecture of course Ki is scheduled at period k, and
 yik = 0 otherwise.

The first constraint imposes that each course is composed of the correct
number of lectures. The second constraint enforces that at each time there are not
more lectures than rooms. The third constraint prevents conflicting lectures to be
scheduled at the same period.

Problem from Definition 3.5 can be shown to be NP-complete through a
simple reduction from the graph colouring problem (see [Wer85]).

A formulation equivalent to Definition 3.5 is based on the conflict matrix
instead of on the curricula. The conflict matrix Cq×q is a binary matrix such that
cij = 1 if courses Ki and Kj have common students, and cij = 0 otherwise.

In [Wer85, Sch99], the course timetabling problem also includes the
following objective function:

Definition 3.6 (course timetabling objective function).
• f(y) = ∑{d ikyik | i = 1,…q; k = 1,…p}
 where dik is the desiderability of having a lecture of course Ki at
 period k.

 - 18 -

In [Tri92] the conflict matrix Cq×q is considered with integer values, such
that cij represents the number of students taking both courses Ki and Kj. In this
way cij represents also a measure of dissatisfaction in case a lecture of Ki and a
lecture of Kj are scheduled at the same time. The objective is measured by the
global dissatisfaction obtained as the sum of all dissatisfactions of the above type.

Preassignments and unavailabilities can be expressed by adding a set of
constraints of the following form:

Definition 3.7 (preassignments and unavailabilities).
• ∀ i = 1,…q ∀ k = 1,…p pik ≤ yik ≤ aik
 where pik = 0 if there is no preassignment, and pik = 1 if a lecture
 of course Ki is scheduled at period k;
 aik = 0 if a lecture of course Ki cannot be scheduled at period k,
 aik = 1 if a lecture of course Ki can be scheduled at period k.

In [Wer85], unavailabilities are expressed as preassignments with dummy
lectures.

Reduction to Graph Colouring
De Werra [Wer85] shows how to reduce a course timetabling problem (see

Definition 3.5) to graph colouring: Associate to each lecture l i of each course Kj a
vertex mij; for each course Kj introduce a clique between vertices mij
(for i = 1,…q). Introduce all edges between the clique for Kj1 and the clique Kj2
whenever Kj1 and Kj2 are conflicting.

In case of unavailabilities, introduce a set of p new vertices, each one
corresponding to a period. The new vertices are all connected each other. This
ensures that each one is assigned to a different colour. If a course cannot have
lectures at a given period, then all the vertices corresponding to the lectures of the
course are connected to a vertex corresponding to the given period. Conversely, if
a lecture must take place at a given time, then the vertex corresponding to that
class is connected to all period vertices but the one representing the given period.

3.3. Approaches to Automated Timetabling

Simple, problem-specific heuristic methods can produce good timetables,
but the size and complexity of modern university timetabling problems has
provoked a trend towards more general problem solving algorithms, or
metaheuristics, such as simulated annealing, evolutionary algorithms, and tabu
search. Problem-specific heuristics may be employed in the context of such an
algorithm to reduce the number of possible solutions processed, or to locally
optimise a solution. Constraint Logic Programming is also a popular approach.

 - 19 -

3.3.1. Sequential Methods
These methods order events using domain heuristics and then assign the

events sequentially into valid time periods so that no events in the period are in
conflict with each other [Car86]. In sequential methods, timetabling problems are
usually represented as graphs where events are represented as vertices, while
conflicts between the events are represented by edges. For example, if some
students have to attend two events there is an edge between the nodes which
represent this conflict. The construction of a conflict-free timetable can therefore
be modelled as a graph colouring problem. Each time period in the timetable
corresponds to a colour in the graph colouring problem and the vertices of a graph
are coloured in such a way so that no two adjacent vertices are coloured by the
same colour.

3.3.2. Cluster Methods
In these methods the set of events is split into groups which satisfy hard

constraints and then the groups are assigned to time periods to fulfil the soft
constraints. An early paper to describe this approach was written by White and
Chan [WC79]. Different optimisation techniques have been employed to solve the
problem of assigning the groups of events into time periods. The main drawback
of these approaches is that the clusters of events are formed and fixed at the
beginning of the algorithm and that may result in a poor quality timetable.

3.3.3. Constraint Based Approaches
In these methods a timetabling problem is modelled as a set of variables

(i.e., events) to which values (i.e., resources such as rooms and time periods) have
to be assigned to satisfy a number of constraints [BPS99, Whi00, Wal94, Cra96,
Sch99, AM99, Bar00, CDJD04]. Usually a number of rules is defined for
assigning resources to events. When no rule is applicable to the current partial
solution a backtracking is performed until a solution is found that satisfies all
constraints.

3.3.4. Meta-heuristic Methods
A variety of meta-heuristic approaches such as simulated annealing, tabu

search, genetic algorithms and hybrid approaches have been investigated for
timetabling. Meta-heuristic methods begin with one or more initial solutions and
employ search strategies that try to avoid local optima. All of these search
algorithms can produce high quality solutions but often have a considerable
computational cost.

 - 20 -

3.4. Purdue Timetabling Problem

Our work is motivated by the class timetabling problem at Purdue
University [RM03, MR04]. Here a timetable for large lecture classes is
constructed by a central scheduling office in order to balance the requirements of
many departments offering large classes that serve students from across the
university. Smaller classes, usually focused on students in a single discipline, are
timetabled by “schedule deputies” in the individual departments. Such a complex
timetabling process, including subsequent student registration, takes a rather long
time. Initial timetables are generated about half a year before the semester starts.
The importance of creating a solver for a dynamic problem increases with the
length of this time period and the need to incorporate various changes that arise.

As for Fall 2004 semester, this problem consists of about 830 classes
(forming almost 1800 meetings) having a high density of interaction that must fit
within 50 lecture rooms with capacities up to 474 students. Room availability is a
major constraint for Purdue. Overall utilization of the time available in rooms
exceeds 78%; moreover, it is around 94% for the four largest rooms. About
90,000 course requests by almost 30,000 students must also be considered. 8.4%
of class pairs have at least one student enrolment in common.

The timetable maps classes (students, instructors) to meeting locations and
times. A major objective in developing an automated system is to minimize the
number of potential student course conflicts which occur during this process. This
requirement substantially influences the automated timetable generation process
since there are many specific course requirements in most programs of study
offered by the University.

To minimize potential time conflicts, Purdue has historically subscribed to
a set of standard meeting patterns. With few exceptions, 1 hour × 3 day per week
classes meet on Monday, Wednesday, and Friday at the half hour (7:30, 8:30,
9:30, ...). 1.5 hour × 2 day per week classes meet on Tuesday and Thursday during
set time blocks. 2 or 3 hours × 1day per week classes must also fit within specific
blocks, etc. Generally, all meetings of a class should be taught in the same
location. Such meeting patterns are of interest to the problem solution as they
allow easier changes between classes having the same or similar meeting patterns.

Another aspect of the timetabling problem that must be considered is the
need to perform student sectioning. Most of the classes in the large lecture
problem (about 75%) correspond to single-section courses. Here we have exact
information about all students who wish to attend a specific class. The remaining
courses are divided into multiple sections. In this case, it is necessary to divide the
students enrolled in each course into sections that will constitute the classes.

Currently, the timetable for Purdue University is constructed manually.
We have proposed an automated timetabling system to solve the initial as well as
the minimal perturbation problem in [MR04, MRB05]. This solution is based on
the iterative forward search algorithm described in the following chapters.

 - 21 -

Problem Representation
Due to the set of standardized time patterns and administrative rules

enforced at the university, it is generally possible to represent all meetings of a
class by a single variable. This tying together of meetings considerably simplifies
the problem constraints. Most classes have all meetings taught in the same room,
by the same instructor, at the same time of day. Only the day of week differs.
Moreover, these days and times are mapped together with the help of meeting
patterns, e.g., a 2 hours × 3 day per week class can be taught only on Monday,
Wednesday, Friday, beginning at 5 possible times (see Figure 3.1).

Fig. 3.1. An example of time preferences for 2 hours × 3 days per week class

Or, for instance, a 1 hour × 2 day per week class can be taught only on
Monday+Wednesday, Wednesday+Friday or Monday+Friday, beginning at 10
possible times (see Figure 3.2).

Fig. 3.2. An example of time preferences for 1 hour × 2 days per week class

In addition, all valid placements of a course in the timetable have a one-to-
one mapping with values in the variable's domain. This domain can be seen as a
subset of the Cartesian product of the possible starting times, rooms, etc. for a
class represented by these values. Therefore, each value encodes the selected time
pattern (some alternatives may occur, e.g., 1.5 hour × 2 day per week may be an
alternative to 1 hour × 3 day per week), selected days (e.g., a two meeting course
can be taught in Monday+Wednesday, Tuesday+Thursday, Wednesday+Friday),

 - 22 -

and possible starting times. A value also encodes the instructor and selected
meeting room. Each such placement also encodes its preferences (soft
constraints), combined from the preference for time, room, building and the
room's available equipment. Only placements with valid times and rooms are
present in a class's domain. For example, when a computer (classroom equipment)
is required, only placements in a room containing a computer are present. Also,
only rooms large enough to accommodate all the enrolled students can be present
in valid class placements. Similarly, if a time slice is prohibited, no placement
containing this time slice is in the class's domain.

The variable and value encodings described above leave us with only two
types of hard constraints to be implemented: resource constraints (expressing that
only one course can be taught by an instructor or in a particular room at the same
time), and group constraints (expressing relations between several classes, e.g.,
that two sections of the same lecture can not be taught at the same time, or that
some classes have to be taught one immediately after another).

There are three types of soft constraints in this problem. First, there are
soft requirements on possible times, buildings, rooms, and classroom equipment
(e.g., a computer or a projector). These preferences are expressed as integers:

• -2 … strongly preferred
• -1 … preferred
• 0 … neutral (no preference)
• 1 … discouraged
• 2 … strongly discouraged

As mentioned above, each value, besides encoding a class's placement
(time, room, instructor), also contains information about the preference for the
given time and room. Room preference is a combination of preferences on the
choice of building, room, and classroom equipment. The second group of soft
constraints is formed by student requirements. Each student can enrol in several
classes, so the aim is to minimize the total number of student conflicts among
these classes. Such conflicts occur if the student cannot attend two classes to
which he or she has enrolled because these classes have overlapping times.
Finally, there are some group constraints (additional relations between two or
more classes). These may either be hard (required or prohibited), or soft
(preferred), similar to the time and room preferences (from -2 to 2).

Additional Constraints
Except the constraints described above, there are several additional

constraints which came up during our work on this lecture timetabling problem.
These constraints were defined in order to make the automatically computed
timetable solution acceptable for users from Purdue University.

First of all, if there are two classes placed one after another so that there is

no time slot in between (also called back-to-back classes), distances between
buildings need to be considered. The general feeling is that different rooms in the

 - 23 -

same building are always reasonable, moving to the building next door is to be
discouraged, a couple of buildings away strongly discouraged, and any longer
distance prohibited.

Each building has its location defined as a pair of coordinates [x,y]. The
distance between two buildings is estimated by Euclides distance in a two
dimensional space, i.e.,

(∆x2 + ∆y2)½

where ∆x and ∆y are differences between x and y coordinates of the buildings. As
for instructors, two back-to-back classes are infeasible to teach when such
difference is more than 200 meters (hard constraint). The other options (soft
constraints) are:

• if the distance is zero (same building), then no penalty,
• if the distance is above zero, but not more than 50 meters, then the

placement is discouraged,
• if the distance is between 50 and 200 meters, the placement is strongly

discouraged

Our concern for distance between back-to-back classes for students is
different. Here it is simply a question of whether it is feasible for students to get
from one class to another during the 10-minute passing period. At present, the
distance between buildings not more than 670 meters is considered as an
acceptable travel distance. For the distance above 670 meters, the classes are
considered as too far. If there is a student attending both classes, it means a
student conflict (same as when these classes are overlapping in time).

Next, since the automatic solver tries to maximize the overall

accomplishment of soft time and room constraints (preferences), the resultant
timetable might be unacceptable for some departments. The problem is that some
departments define their time and room preferences more strictly than others. The
departments which have not defined time and room preferences usually have most
of their classes taught in early morning or late evening hours. Therefore, we
introduced the departmental time and room preferences balancing mechanism.
The solver is trying to fulfil the time and room preferences as well as to balance
the used times between individual departments. This means that each department
should use each time unit (half-hour, e.g., Monday 7:30 – 8:00) in a similar
portion to the other time units used by the department.

At first, for each department and time unit, there is a number stating how
many times each time unit can be used (i.e., how many placements of all classes
from the department can be placed over the time unit). For instance, if there are
two 1 hour × 2 days per week classes, the time unit Wednesday 8:00 – 8:30 can be
used four times, i.e., each of these classes can be placed either on Monday-
Wednesday or Wednesday-Friday from 8:00 till 9:00. Than, an average fill factor
is computed for each department and time unit. It is a ratio between the computed
number of placements using the time unit and the total number of placements of
all classes from the department (it is sixty for the above example with two classes,

 - 24 -

each class can be placed in thirty different times if all possible times are allowed).
So, this factor states the overall usage of a time unit for a department. The reason
for computing such number is the fact that some times are used much more than
others (e.g., if the department has all the classes in n hours hour × 3 days per week
time pattern, only Monday, Wednesday and Friday are used, see Figure 3.1). The
initial allowance, which states how many times each time unit can be used by a
department is computed from this maximal fill factor: it is the maximal fill factor
increased by the given percentage (20% is used in our tests) and rounded upwards
to the first integer number. The overall department balancing penalty of a
solution is the sum of overruns of this initial allowance over all time units and
departments. The intention is to keep this number as low as possible.

Finally, since all of the classes are at least two time slots long (60

minutes), an empty time slot of a room which is surrounded by classes on both
sides (i.e., the room is not used for 30 minutes between two consecutive classes)
is considered useless – no other class can use it. The number of such useless half-
hours should be minimized. Also the situation when a room is occupied by a class
which is using less than ⅔ of its seats is discouraged. Both these soft constraints
are considered much less important than all the constraints described above.

 - 25 -

4. Iterative Forward Search Algorithm

The iterative forward search (IFS) algorithm that we propose here is based
on ideas of local search methods [MF00]. However, in contrast to classical local
search techniques, it operates over feasible, though not necessarily complete
solutions. In such a solution, some variables can be left unassigned. Still all hard
constraints on assigned variables must be satisfied. Similarly to backtracking
based algorithms, this means that there are no violations of hard constraints.

Working with feasible incomplete assignments has several advantages
compared to the complete infeasible assignments that usually occur in local search
techniques. For example, when the solver is not able to find a solution (i.e., a
complete feasible assignment), a largest feasible partial assignment (using
cardinality) can be returned. Especially in interactive timetabling applications,
such assignments are much easier to visualize, even during the search, since no
hard constraints are violated. For instance, two lectures never use a single
resource (e.g., a classroom) at the same time. Moreover, because of the iterative
character of the search, the algorithm can easily start, stop, or continue from any
feasible assignment, either complete or incomplete.

In this section, we present the iterative forward search algorithm which is

the backbone part of this thesis as well as the timetabling software made for the
Purdue University. The framework based on this IFS algorithm (written in Java) is
described in more detail in appendixes A and B. It is well extendable and it can be
used for solving lecture timetabling problems as well as for other constraint-based
problems. Some of the general, problem independent extensions of this algorithm
are described in the following chapter 5. In order to present the general purpose of
this algorithm, it is described here for solving general finite constraint satisfaction
and optimisation problems.

4.1. Related Works

Local search algorithms [MF00] (e.g., min-conflict [MJP92] or tabu search
[GH97]) perform an incomplete exploration of the search space by repairing an
infeasible complete assignment. Local search algorithms move from one complete
(but infeasible) assignment to another, typically in a non-deterministic manner,
guided by heuristics. In general, local search algorithms are incomplete, they do
not guarantee finding a complete solution satisfying all the constraints. But, unlike
systematic search algorithms, they do not suffer from the early mistake problem:
as soon as a decision is suspected to lead to a dead-end, it can be undone, without

 - 26 -

having anything to lose. Also, these algorithms may be far more efficient (wrt.
response time) than systematic ones in finding a solution. For optimisation
problems, they can reach a far better quality in a given time frame.

4.1.1. Local Search Approaches
The term local search or neighbour search expresses the idea that these

algorithms modify an inconsistent assignment locally to move to a better
assignment. During each iteration step, only assignments from the neighbourhood
of the current assignment are considered and one of them is picked. There are
many ways how to define neighbourhood of an assignment. Usually, a value of
one variable is changed.

There are two basic local search algorithm schemes, hill-climbing and min-
conflict. Both of them usually start from a randomly (or heuristically) selected
assignment and they repeatedly perform local steps to their neighbourhood till
a solution is found or the time limit exceeded. But, they differ in the way how the
neighbour assignments are selected.

Hill-climbing Algorithm
Hill-climbing [MF00] always selects the best assignment out of all the

neighbours. This means the assignment which minimizes the number of violated
constraints. In case of optimisation problems, it picks up the neighbour
assignment which minimizes the objective function (e.g., the number of violated
soft constraints) among the assignments with the minimal number of violated hard
constraints. When there is no better assignment than the current one, the search is
stuck in a local optimum. The hill-climbing algorithm usually restarts the search
from another initial (e.g., randomly selected) assignment. The name of the
algorithm, hill-climbing, is derived from its original principle when a maximum
was searched by climbing – increasing the evaluation value.

Min-conflict Algorithm
On the other hand, min-conflict [MJP92] algorithm chooses the best

assignment only from a subset of the neighbour assignments. Usually, it randomly
selects any conflicting variable, i.e., a variable that is involved in an unsatisfied
constraint, and then picks a value which minimizes the number of violated
constraints. If no such value exists, it picks randomly one value that does not
increase the number of violated constraints (the current value of the variable is
picked only if all the other values increase the number of violated constraints).
Note, that the pure min-conflicts algorithm is not able to leave a local minimum.
In addition, if the algorithm achieves a strict local minimum, it does not perform
any move at all and, consequently, it does not terminate.

Min-conflict Random Walk Algorithm
Because the pure min-conflict algorithm cannot go beyond a local

minimum, some noise strategies were introduced in it. Among them, the random-

 - 27 -

walk strategy has become one of the most popular ones. For a given conflicting
variable, the random-walk strategy picks randomly a value with probability prw,
and applies the min-conflict heuristic with probability 1- prw. Note that the same
strategy can be used in hill-climbing as well, i.e., with the probability prw a
random neighbour assignment is selected.

Tabu Search Algorithm
Tabu search [GH97] is another method to avoid cycling and getting

trapped in a local minimum. It is based on the notion of tabu list, which is a
special short term memory (usually containing pairs <variable, value>) that
maintains a selective history, composed of previously encountered configurations
or more generally pertinent attributes of such configurations. A simple tabu-
search strategy consists in preventing configurations of the tabu list from being
recognised for the next lts iterations (lts, called tabu tenure, is the size of tabu list).
Such a strategy prevents the search from being trapped in short term cycling and
allows the search process to go beyond local optima. Tabu restrictions may be
overridden under certain conditions, called aspiration criteria. Aspiration criteria
define rules that govern whether next configuration is considered as a possible
move even when it is tabu. One widely used aspiration criterion consists of
removing a tabu classification from a move when the move leads to a solution
better than that obtained so far.

4.1.2. Hybrid Approaches
The idea of mixing traditional systematic search approaches with local

search is not new. Those hybrid approaches have led to good results on large scale
problems. Three categories of hybrid approaches can be found in the literature
[PG96, Sch97, RR98, JL02, Pre04]:

• performing local search before or after a systematic search;
• performing a systematic search improved with local search at some

point of the search: at each leaf of the tree (i.e., over a complete
assignment) but also at nodes in the search tree (i.e., on partial
assignments);

• performing an overall local search, and using systematic search either
to select a candidate neighbour or to prune the search space

Decision Repair Algorithm
For instance, the decision repair algorithm (see Fig. 4.1.), presented in

[JL02] falls into the third category above. It repeatedly extends a set of
assignments (called decisions) satisfying all the constraints, like in systematic
search algorithms. It performs a local search to repair these assignments when a
dead-end is reached (i.e., these decisions become inconsistent). After these
decisions are repaired, the construction of the solution continues to the next dead-
end.

 - 28 -

procedure decision-repair(V,D,C)
 //a CSP problem is the parameter
 CD = any initial set of decisions;
 //decisions are constraints as well, i.e., Variable =value
 while conditions of failure not satisfied do

 C’ = C ∪ C D;
 switch obviousInferences (Ф(V,D,C’))
 case no solution:
 k = conflict explaining the failure;
 C D = neighbour (C D, k);
 case solution:
 return C’;
 default:
 C D = extend (C D);
 end switch
 end while
 return failure;
end procedure

Fig. 4.1. The decision-repair algorithm

The decision-repair algorithm starts with a partial solution which is a result
of a set of decisions. It first applies a filtering technique Ф. When no
inconsistency is detected, the algorithm adds a decision that extends the current
partial solution, and the search continues. When a dead-end is reached, we know
that there is an incompatibility between the decisions made so far. The algorithm
tries to repair that set of decisions. A conflict is identified (the smaller the
conflict, the better), and the conflict is used to choose a judicious neighbour of the
current set of decisions. For example, a judicious neighbour may be obtained by
performing a local change on the current set of decisions: negate one of the
decisions that occur in the conflict. The function obviousInference is able to
examine a set of constraints in order to decide whether to stop the computation or
not.

Constrained Local Search Algorithm
Another approach is used in the constrained local search algorithm

presented in [Pre00, Pre04]. The algorithm is constructed by randomizing the
backtracking component of a systematic search algorithm; that is, allowing
backtracking to occur on arbitrary chosen variables. It has an integer parameter
called the noise level stating on how many variables the algorithm will backtrack
(selected by procedure backtrackVariables). See Figure 4.2 for the algorithm.

The constrained local search algorithm iteratively extends a partial feasible
assignment (via assigning a selected value to a selected variable, only values
consistent with the existing assignments are considered) until a complete
assignment is found or a dead end is reached. When the dead end is reached,
which means that an unassigned variable with no value consistent with the
existing assignment is selected, a given number of variables is unassigned (stated
by noise level parameter ε, selected either randomly or heuristically) and

 - 29 -

unpropagated if a filtering algorithm is used. The algorithm then continues
extending the partial assignment again.

procedure cls(V,D,C, ε) // ε is the noise level
 σ = {}; //current assignment
 while σ is not complete do

 assigned = {A ∈V | A assigned in σ}
 unassigned = V – assigned;
 A = selectVariable (unassigned);
 values = {a ∈DA; σ ∪ {A/a} is consistent};
 if (values is empty) then
 for all v in backtrackVariables (assigned, ε) do
 unassign v in σ and unpropagate;
 end for
 else
 a = selectValue (D A);
 σ = σ ∪ {A/a};
 end if
 end while
 return σ;
end procedure

Fig. 4.2. The constrained local-search algorithm

Constructive Backtracking-free Algorithm
A similar approach, combining backtracking-free algorithm and local

search is presented in [Sch97]. The algorithm iteratively extends a feasible partial
assignment until a dead-end is reached. At this point, it performs a local search
phase which makes local changes on the current partial assignment. Thereafter,
the construction continues up to the next dead-end. The whole procedure stops
either when a complete assignment is reached (positive answer) or when a
predetermined number of local search phases have been accomplished (negative
answer). See Figure 4.3 for the algorithm.

This approach differs from previous ones in at least two aspects: At first, it
revises the partial assignment by making use of a full run of local search, instead
of a fixed number of changes. Next, the local changes are selected with the
additional objective of improving the possibility of the partial assignment to be
completed. That is, local search is driven not only by the feasibility (and
optimality) of the current partial assignment, but also by so called look-ahead
factor. Furthermore, in order to make local search effective, the respective
weights given to the three different components of the cost function that guides
local search (feasibility, optimality, and look-ahead) are dynamically changed.

 - 30 -

procedure cbf(V,D,C)
 σ = {}; //current assignment
 while σ is not complete do

 assigned = {A ∈V | A assigned in σ}
 unassigned = V – assigned;
 A = selectVariable (unassigned);
 values = {a ∈DA; σ ∪ {A/a} is consistent};
 if (values is empty) then
 if last trial then return failure;
 β = σ;
 repeat
 move = selectMove (σ);
 makeMove(move, σ);
 if improves (σ, β) then β = σ;
 until last iteration or lower bound reached;
 σ = β;
 else
 a = selectValue (values);
 σ = σ ∪ {A/a}
 end if
 end while
 return σ;
end procedure

Fig. 4.3. The backtracking-free algorithm combined with LS

The procedure improves relies on a score function that assesses the quality
of each assignment. Such function counts the number of constraint violations, thus
measuring the distance to feasibility. For optimisation problems, it also takes into
account the objective function of the problem. The function also includes a look-
ahead factor (which estimates the likelihood of the remaining sub-problem to be
solvable). Furthermore, since it is computed on partial assignments, only
constraints regarding the instantiated variables are taken into account. For the
same reason, the objective function is not computed exactly, but it is generally
estimated using a lower bound (in a similar way as branch-and-bound
procedures).

Unlike the above approaches, our algorithm operates more like the local

search method – it does not execute a local search after a dead-end is reached but
it applies the exact same local steps during search. In each iteration step a partial
feasible assignment can be extended by an arbitrary assignment of a value to a
variable and the consistency is enforced by a problem-independent consistency
technique which can unassign some of the already assigned variables in order to
make the partial assignment consistent with the selected assignment. Moreover,
this makes the algorithm easy to implement and also to extend with various
selection heuristics and other techniques like for instance filtering algorithms.

 - 31 -

4.2. Iterative Forward Search Algorithm

Iterative forward search works in iterations (see Figure 4.4. for algorithm).
During each step, a variable A is initially selected. Typically an unassigned
variable is chosen like in backtracking-based search. An assigned variable may be
selected when all variables are assigned but the solution found so far is not good
enough (for example, when there are still many violations of soft constraints).
Once a variable A is selected, a value a from its domain DA is chosen for
assignment. Even if the best value is selected (whatever “best” means), its
assignment to the selected variable may cause some hard conflicts with already
assigned variables. Such conflicting assignments are removed from the solution
and become unassigned. Finally, the selected value is assigned to the selected
variable.

procedure ifs(V,D,C, α) // an initial assignment α is the parameter

 σ = α; // current assignment
 β = α; // best assignmen
 while canContinue (σ) do // CSP problem Φ=(V,D,C) is

 A = selectVariable (σ); // a global parameter
 a = selectValue (σ, A); // for all used functions
 η = conflicts (σ, A, a); //conflicting assignments
 σ = (σ - η) ∪ {A/a}; //next assignment
 if better (σ, β) then β = σ;
 end while
 return β;
end procedure

Fig. 4.4. The iterative forward search algorithm

The algorithm attempts to move from one (partial) feasible solution σ to
another via repetitive assignment of a selected value a to a selected variable A.
During this search, the feasibility of all hard constraints in each iteration step is
enforced by unassigning the conflicting assignments η (computed by function
conflicts). The search is terminated when the requested solution is found or when
there is a timeout expressed, for example, as a maximal number of iterations or
available time being reached. The best solution found is then returned.

The above algorithm schema is parameterized by several functions,
namely

• the termination condition (function canContinue),
• the solution comparator (function better),
• the variable selection (function selectVariable) and
• the value selection (function selectValue).

 - 32 -

Formalization
Constraint satisfaction can be defined as follows: A constraint c of

variables a1,a2,..an is satisfied with an assignment σ, if the assignment σ contains
all variables a1,a2,..an and the constraint c is satisfied with this assignment σ or the
assignment σ can be extended to an assignment γ which contains all variables
a1,a2,..an such that the constraint c is satisfied with this assignment γ.

Definition 4.1 (restriction of an assignment to a constraint). Let Θ =
(V,D,C) be a CSP, restriction of an assignment σ to a constraint
c∈C is

σ↓c = {v/a | v/a∈σ & v∈dom(c)}
 where dom(c) represents a set of variables on which the constraint
 c is defined.
Definition 4.2 (constraint satisfaction). Constraint c∈C is satisfied

with an assignment σ of a CSP Θ = (V,D,C) if and only if
• |σ↓c|=|dom(c)| and c(σ↓c) holds true or
• ∃ γ ⊇ σ assignment of Θ where |γ↓c|=|dom(c)| and c(γ↓c)

During the search, after each iteration step, we have an assignment σ of a
subset of all variables (as described in Chapter 2.1). This assignment is feasible,
which means that every hard constraint is satisfied with this assignment σ:

Definition 4.3 (feasible assignment). Assignment σ of a CSP Θ =
(V,D,C) is feasible if and only if all constraints are satisfied with
the assignment σ, i.e., ∀c∈C

• |σ↓c|=|dom(c)| and c(σ↓c) holds true or
• ∃ γ ⊇ σ assignment of Θ where |γ↓c|=|dom(c)| and c(γ↓c)

This means that after each iteration step we have an assignment which is
consistent wrt. a consistency technique that only enforces satisfaction of all hard
constraints as defined above. Similarly, consistency of the assignment respecting
any arbitrary consistency technique ζ (see Definition 2.4) can be enforced during
the search. This means that after every iteration step, we have an assignment σ
which fulfils the consistency check ζ(Θσ), where ζ is the consistency technique
and Θ is the solved constraint satisfaction problem.

The task of the function conflicts is to enforce such consistency. It returns
a subset of the current assignment η ⊆ σ, such that the new assignment (σ - η) ∪
{A/ a} is consistent respecting the used consistency technique ζ (A is the variable
and a is the value selected in the current iteration step).

Definition 4.4 (property of function conflicts). Let Θ = (V,D,C) be a
CSP, σ be a consistent (partial) assignment of Θ, A∈V be a
selected variable and a∈DA be a selected value. Function conflicts
returns η ⊆ σ such that the assignment γ = (σ - η) ∪ {A/ a} is a
consistent (partial) assignment of Θ respecting some given
consistency technique ζ.

 - 33 -

In the above Definition 4.4, we assume that in the domain DA of variable
A are only values that are themselves consistent with all constraints respecting the
consistency technique ζ. This means that for every value a∈DA, consistency check
ζ(Θ{A/ a}) is true. As for the consistency based on constraint satisfaction (see
Definitions 4.2 and 4.3), this means that for every value a from DA, all constraints
are satisfied with the assignment {A/a}. (i.e., ∀c∈C c({A/a}) is true). Otherwise,
if such an inconsistent value a is selected, the resultant assignment γ can never be
consistent since it contains the assignment {A/a} that is not consistent (e.g.,
∃c∈C, c({A/a}) is false). These inconsistent values can be permanently filtered
from the domains at the beginning of the search with no harm (e.g., by calling of
the consistency technique on the problem with an empty assignment), since there
cannot be a (partial) consistent assignment containing such values.

Obviously, we are looking for a strict subset of the current assignment σ
(concerning cardinality) which satisfies the property from Definition 4.4.
A minimal subset is the best, but it could be expensive to compute. Our current
implementation does not try to find such a minimal set of “conflicting” variables.
Instead, it tries to compute a good one quickly.

There is also a correspondence between these sets of “conflicting”
variables and nogood sets in backtracking based algorithms [JDB00]. A nogood
set is a subset of the current (partial) assignment that cannot be satisfied (i.e., no
feasible solution contains this set). Potentially, a variable, different from A, from
each such nogood set that can be computed from the assignment σ ∪ {A/ a}, needs
to be selected into our set of conflicts.

4.2.1. Termination Condition
The termination condition determines when the algorithm should finish.

For example, the solver should terminate when the maximal number of iterations
or some other given timeout value is reached. Moreover, it can stop the search
process when the current assignment is good enough, e.g., all variables are
assigned and/or some other solution parameters are in the required ranges. For
example, the solver can stop when all variables are assigned and less than 10% of
the soft constraints are violated. Termination of the process by the user can also
be a part of the termination condition.

4.2.2. Solution Comparator
The solution comparator compares two assignments: the current

assignment and the best assignment found. This comparison can be based on
several criteria. For example, it can lexicographically order assignments according
to the number of unassigned variables (a smaller number is better) and the number
of violated soft constraints.

 - 34 -

4.2.3. Variable Selection
As mentioned above, the presented algorithm requires a function that

selects a variable to be (re)assigned during the current iteration step. This function
is equivalent to a variable selection criterion in constraint programming. There are
several guidelines for selecting a variable [Dech03]. In local search, the variable
participating in the largest number of violations is usually selected first. In
backtracking-based algorithms, the first-fail principle is often used, i.e., a variable
whose instantiation is most complicated is selected first. This could be the
variable involved in the largest set of constraints or the variable with the smallest
domain, etc.

We can split the variable selection criterion into two cases. If some
variables remain unassigned, the “worst” variable among them is selected, i.e.,
first-fail principle is applied. This may be, for example, the variable with the
smallest domain or with the highest number of hard and/or soft constraints.

The second case occurs when all variables are assigned. Because the
algorithm does not need to stop when a complete feasible assignment is found, the
variable selection criterion for such case has to be considered as well. Here all
variables are assigned but the assignment is not good enough, e.g., in the sense of
violated soft constraints. We choose a variable whose change of a value can
introduce the best improvement of the assignment. It may, for example, be a
variable whose value violates the highest number of soft constraints.

It is possible for the assignment to become incomplete again after such
an iteration because a value which is not consistent with all hard constraints can
be selected in the value selection criterion. This can be also taken into account in
the variable selection heuristics.

4.2.4. Value Selection
After a variable is selected, we need to find a value to be assigned to the

variable. This problem is usually called “value selection” in constraint
programming [Dech03]. Typically, the most useful advice is to select the best-fit
value. So, we are looking for a value which is the most preferred for the variable
and which causes the least trouble as well. This means that we need to find a
value with the minimal potential for future conflicts with other variables. For
example, a value which violates the smallest number of soft constraints can be
selected among those with the smallest number of hard conflicts.

To avoid cycling, it is possible to randomize the value selection procedure.
For example, it is possible to select the N best values for the variable and choose
one of them randomly. Or, it is possible to select a set of values so that the
heuristic evaluation for the worst value in this group is maximally p percent
higher than the heuristic evaluation of the best value (where smaller value means
better evaluation). Again, the value is selected randomly from this group. This
second rule inhibits randomness if there is a single very good value.

 - 35 -

4.2.5. Conflicting Assignments
Like in other traditional constraint satisfaction frameworks, the input

problem consists of variables, values and constraints. Each constraint is defined
over a subset of the problem variables and it prohibits some combinations of
values which these variables can simultaneously take. In many CSPs, all
constraints are binary (or the problem is transformed into an equivalent problem
with only binary constraints before the search is started) since most of the
consistency and filtering techniques are designed only for binary constraints. In
such a case, the function conflicts is rather simple and it returns an unambiguous
subset of the given assignment. It enumerates all the constraints which contain the
selected variable and which are not consistent with the selected value. It returns
all the variables of such constraints, different from the selected variable.

Definition 4.5 (function conflicts for binary CSP). Let Θ = (V,D,C) be
a binary CSP, σ be a feasible (partial) assignment of Θ, A∈V and
a∈DA. Function conflicts returns η ⊆ σ such that: η = {B/b |
B/b∈σ & ((B=A & b≠a) ∨ ∃c∈C (¬c(σ∪{A/ a}) & {B/ b} ∈σ↓c))}

All assignments from σ that are involved in any constraint not satisfied
(with the new assignment σ ∪ {A/ a}) are returned. Also, if the selected variable
A is already assigned (so a different value has been selected for A), it has to be
unassigned first (previous assignment of the variable A is to be returned).

Lemma 4.1 Let Θ = (V,D,C) be a binary CSP (i.e., ∀c∈C |dom(c)|=2)
that is arc consistent, σ be a feasible (partial) assignment of Θ,
A∈V and a∈DA. Function conflicts from Definition 4.5 returns a
set of conflicting assignments η ⊆ σ that is minimal (concerning
cardinality of η) and γ = (σ - η) ∪ {A/ a} is a feasible (partial)
assignment of Θ.

Proof of feasibility: Let γ = (σ - η) ∪ {A/ a} be infeasible, then there is a
constraint c∈C that is not satisfied with γ. This means that c is also not satisfied
with σ ∪ {A/ a}. Since c was satisfied with σ (σ is a feasible assignment),
A∈dom(c). Because c is binary, there is B∈dom(c), A≠B. There are the following
possibilities:

• ∃b∈Db, {B/b} ∈σ : but since (¬c({A/ a, B/b}) & {B/ b} ∈σ↓c), {B/b} is
in the set η, c is satisfied with γ which is a contradiction.

• ∀b∈Db, {B/b} ∉σ : but since ∃b’∈Db c({A/a, B/b’}) (since c is
satisfied in σ and the problem is arc consistent), c is satisfied in
σ ∪ {A/ a} and therefore also in (σ - η) ∪ {A/ a}.

Proof of minimality: ∀{B/ b} ∈ η, either

• B = A and b ≠ a: In this case {B/b} has to be in η since A cannot be
assigned twice (γ has to be an assignment),

 - 36 -

• or ∃c∈C ¬c({A/ a, B/b}) since all constrains are binary.

In both cases, {B/b} has to by contained in any conflicting set otherwise γ
is either not assignment (A is assigned twice) or not feasible (there exists a
constraint that is not satisfied). So, every set of conflicting variables has to contain
the set η computed according to the Definition 4.5.□

On the other hand, most of real problems have plenty of multi-variable

constraints, like, for instance, a resource constraint in timetabling. Such resource
constraint enforces the rule that none of the events which are using the given
resource can be overlapping in time (if the resource has capacity one) or that the
amount of the resource used at a time does not exceed its capacity. It is not very
useful to replace such a resource constraint by a set of binary constraints (e.g.,
prohibiting two overlapping placements in time of two particular events using the
same resource), since this approach usually ends up with thousands of constraints.
Also, there is usually a much more effective consistency and/or filtering technique
working with the original constraint (for instance, “cumulative” constraint
[RM03] is usually used for modelling resource constraints in CLP).

Using multi-variable constraints, the set of conflicts returned by function
conflicts can differ according to its implementation (but it must satisfy the
property from Definition 4.4). For instance, we can have a constraint A+B=C
where A and C are already assigned to A=3 and C=5 (i.e., σ = {A/3, C/5}). Then
if the assignment B=3 is selected, either A or C or both A and C can be
unassigned to make the problem {A/3, B/3, C/5} consistent with the constraint
A+B=C. Intuitively, there should be a minimal number of variables unassigned in
each iteration step (we are trying to increase the number of the assigned variables
during the search). Also, for many constraints, it is possible to find inconsistencies
even when not all variables of the constraint are already assigned. For instance, if
there are two lectures using the same room at the same time, we know that one of
them needs to be unassigned even when there are unassigned lectures which will
also need to be placed in that room.

In our IFS solver (described in more detail in Appendix A), each hard

constraint needs to implement the procedure computeConflicts which returns all
the already assigned variables that are incompatible with the selected assignment.
This procedure is called for all constraints which contain the selected variable in
an ordered manner (in the order the constraints were inserted into the system).
Furthermore, this order can be changed during the search. Moreover, the
computed set of conflicts is passed to this computeConflicts procedure as a
parameter, so the constraint can “see” which conflicts are already selected for
unassignment by previously processed constraints and can use this information to
unassign a smaller number of variables. For example, if there is a constraint
A+B=C not satisfied with the new assignment C=c, the computeConflicts
procedure can pick the variable (either A or B) that is already selected by some of
the prior constraints. This way, we are not computing the very minimal set of
conflicts, however, we allow for computing this set in an efficient way. It can be

 - 37 -

also tuned for a particular problem by changing the order of constraints. For our
timetabling problems, we do not need to take this order into account, since most
of the constraints are resource constraints of singleton capacity where the
conflicting assignments are exactly given (i.e., the already assigned events which
are using the same resource as the selected one and which overlap in time with it).
The function conflicts is outlined in Figure 4.5.

procedure conflicts (σ, A, a)

 η ={}; //resultant set of conflicting variables
 for each constraint c ∈C so that A ∈dom(c) in a given order do

 η = η ∪ computeConflicts (c, σ, A, a, η);
 end for
 return η;
end procedure

Fig. 4.5. The conflicts procedure

Also note that each constraint can keep its notion about the assigned
variables. For instance, the resource constraint of a particular room can memorize
a look-up table stating what lecture is assigned in what time slot(s), so for the
computation of the conflicting lectures it only looks through the appropriate fields
of this table. The implementation is based on listening to “variable assigned” and
“variable unassigned” events. Also note that this default consistency technique is
defined on a problem level and it can be changed by a more dedicated one,
implemented for a particular problem. For more details, see Appendix A.

Let computeConflicts(c, σ, A, a) be a function similar to the procedure
computeConflicts from Figure 4.5 that returns assignments conflicting with the
new assignment σ ∪ {A/ a} for the given constraint c. The only difference is that
the function in Figure 4.5 gets a list of inconsistent assignments computed for σ ∪
{A/ a} on the previously visited constraints. The following Lemma 4.2 shows that
using such incremental computation of the set of conflicting variables still
produces the feasible (partial) assignment at the end of each iteration.

Lemma 4.2 Let Θ = (V,D,C) be a CSP, σ be a feasible (partial)
assignment of Θ, A∈V be a selected variable and a∈DA be a
selected value. If ∀c∈C ηc = computeConflicts(c, σ, A, a) is a
subset of σ so that c((σ - ηc) ∪ {A/ a}), the new assignment γ = (σ -
 η) ∪ {A/ a} where η = { B/b | ∃c∈C A∈dom(c) & B/b∈ηc} is
a feasible (partial) assignment of Θ.

Proof: The proof of Lemma 4.2 immediately follows from the definition
of a feasible assignment (see Definition 4.3) stating that an assignment is feasible
if all constraints are satisfied with the assignment (i.e., ∀c∈C c(γ)) and from the
fact that γ = (σ - η) ∪ {A/ a} ⊆ (σ - ηc) ∪ {A/ a} since η ⊇ ηc. Because σ is feasible

 - 38 -

assignment, all constraints that does not contain variable A are satisfied in the new
assignment γ as well.□

4.3. IFS for Minimal Perturbation Problem

Let us first describe the meaning of perturbation in our approach. The
changed problem differs from the initial problem by input perturbations. An input
perturbation means that a variable must have different values in the initial and
changed problem because of some input changes (e.g., a course must be scheduled
at a different time in the changed problem).

The solution to the minimal perturbation problem (MPP) [SW00, BMR03,
BMR04] can be evaluated by the number of additional perturbations. They are
given by subtraction of the final number of perturbations and the number of input
perturbations. An alternative approach is to consider variables in the initial and in
the new problem which were assigned differently [RRH02, BMR03, BMR04]. As
before, we need to minimize the number of such differently assigned variables.

Despite the local search nature of the algorithm, there are some
adjustments needed to be able to effectively solve the MPP. The purpose of these
adjustments is to minimize the number of additional perturbations. The easiest
way to do this is to adopt variable and value selection heuristics which prefer the
previous assignments (but not all the time, to avoid cycling).

For example, value selection heuristics can be adopted to select the initial
value (if it exists) randomly with a probability P (it can be rather high, e.g.,
between 50-90%). If the initial value is not selected, the original value selection
can be executed. Also, if there is the initial value in the set of best-fit values (e.g.,
among values with the minimal number of hard and soft conflicts), the initial
value can be preferred as well. Otherwise, a value can be selected randomly from
the constructed set of best-fit values. A disadvantage of such selection is that the
probability P has to be selected carefully: if it is too small, the search can easily
move away and the number of additional perturbations will grow during the
search. If it is too high, the search will stick too much with the initial solution and,
if there is no solution with a small amount of additional perturbations it will be
hard to find a feasible solution.

Another approach is to limit the number of additional perturbations during
the search. Furthermore, like in branch and bound, such a limit can be decreased
when a feasible solution with the given number of perturbations is found. For
example, if the number of additional perturbations is equal to or greater than the
limit, the initial value has to be selected. Otherwise, if the number of additional
perturbations is below the limit, the original value selection strategy is followed.
The number of additional perturbations can also include variables that are not
assigned yet whose initial values cause a hard conflict with the current
assignments.

The above approaches can also be combined together, which can help to
divide their influence during the search.

 - 39 -

Variable selection heuristics can also be adopted to find a solution with a
small number of perturbations. For example, when all variables are assigned, a
variable that has an initial value but such value is not assigned to it should be
selected, e.g., randomly among all variables that have not the initial value
assigned, and that participate in the highest number of violated soft constraints.

4.4. Summary

In this section, we have presented the iterative forward search algorithm
which is a mixture of systematic search and the local search approach. In the
following section, we will discuss some of its extensions and later on we will
present some computational results of this algorithm used on a CSP problem as
well as on the large lecture timetabling problem on Purdue University.

The very first version of this algorithm was presented in [MB01] and in
the diploma thesis [Mul01] as an ad-hoc solution for the iterative lecture
timetabling problem. Its application on lecture timetabling problem on
Mathematics and Physics Faculty of Charles University was presented in [MB02].
The applicability of this algorithm on the n-queens problem was presented in
[Mul02].

The iterative forward search algorithm in the form as it is presented in this
chapter for solving of a general CSP with various extensions (conflict-based
heuristics, maintenance of arc consistency, its extension towards dynamic
backtracking) was presented in [MBR04]. Its application to the minimal
perturbation problem of Purdue University timetabling was presented in [MR04,
MRB05]. Also, we used this algorithm in comparison with a branch&bound
algorithm designed for solving MPP problem in [BMR04] where it was better
than the proposed branch&bound algorithm.

 - 40 -

5. IFS Extensions

In this section, we present some of the problem-independent extensions of
the iterative forward search algorithm. We present the conflict-based statistics
which is a learning technique that helps the solver to escape a local optimum. We
also describe how the presented conflict-based statistics can be used inside a
traditional local-search algorithm. Next, we will present how to dynamically
maintain arc consistency during the search using explanations. We also present
how to change an incomplete iterative forward search algorithm into a complete
systematic search algorithm called dynamic backtracking.

5.1. Conflict-based Statistics

Value ordering heuristics play an important role in solving various
problems. They allow choosing suitable values for particular variables to compute
a complete and/or optimal solution. Problem-specific heuristics are usually
applied because problem-independent heuristics are computationally expensive.
Here we propose an efficient problem-independent approach to value selection
whose aim is to recognize good and poor values.

We have applied this so called conflict-based statistics (CBS) in our
iterative forward search algorithm [MBR04, MR04, MRB05]. This combination
helped us to solve a large-scale timetabling problem at Purdue University. Here
we describe a general scheme for the conflict-based statistics and apply it to local
search and iterative forward search methods.

5.1.1. Related Works
Methods similar to CBS were successfully applied in earlier works [DF02,

JL02]. In the weighting-conflict heuristics presented in [JL02], a weight is
associated with each decision (assignment of a value to a variable). It
characterizes the number of times that the decision has appeared in any conflict. It
also takes the arity of a conflict into account. Each time a conflict is found, the
weight of its decision constraints (i.e., assignments which are in the conflict) is
increased by 1/r where r is the arity of the conflicting constraint. These weights
are used for selections of decisions which are negated when a dead-end is reached.

In our approach, the conflict-based statistics works as an advice in the
value selection criterion. It helps to avoid repetitive, unsuitable assignments of the
same value to a variable. In particular, conflicts caused by this assignment in the
past are memorized. In contrast to the weighting-conflict heuristics proposed in

 - 41 -

[JL02], conflict assignments are memorized together with the assignment which
caused them. Also, we propose our statistics to be unlimited, to prevent short-term
as well as long-term cycles.

5.1.2. General Conflict-based Statistics
The main idea behind conflict-based statistics is to memorize conflicts and

discourage their future repetition. For instance, when a value is assigned to a
variable, conflicts with some other assigned variables may occur. This means that
there are one or more constraints which prohibit the applied assignment together
with the existing assignments. A counter, tracking how many times such an event
occurred in the past, is stored in memory. If a variable is selected for an
assignment (or reassignment) again, the stored information about repetition of
past conflicts is taken into account.

Conflict-based statistics is a data structure that memorizes hard conflicts
which have occurred during the search together with their frequency and
assignments which caused them.

Definition 5.1 (CBS). Conflict-based statistics is an array

CBS[Va = va → ¬ Vb = vb] = cab

which means that the assignment Va = va caused cab times a hard
conflict with the assignment Vb = vb in the past.

Note that it does not imply that these assignments Va = va and Vb = vb

cannot be used together in case of non-binary constraints. The proposed conflict-
based statistics does not actually work with any constraints. It only memorizes the
conflict assignments together with the assignment which caused them. This helps
us capture similar cases as well, e.g., when the applied assignment violates a
constraint different from the past ones, but some of the created conflicts are the
same. It also reduces the total space allocated by the statistics.

Also note that we do not exactly express what “conflict” mean in general,
since it can vary on the algorithm where the conflict-based statistics is to be used.
For instance, in the iterative forward search, conflicting assignments (i.e.,
assignments that are incompatible with the new assignment, see chapter 4.2.5) can
be used.

The conflict-based statistics can be implemented as a hash table. Such
structure is empty in the beginning. During computation, the structure contains
only non-zero counters. A counter is maintained for a tuple [A = a → ¬ B = b] in
case that the value a was selected for the variable A and this assignment A = a
caused a conflict with an existing assignment B = b. An example of this structure

A = a → 3 × ¬ B = b, 4 × ¬ B = c, 2 × ¬ C = a, 120 × ¬ D = a

expresses that variable B conflicts three times with its assignment b and four
times with its assignment c, variable C conflicts two times with its assignment a
and D conflicts 120 times with its assignment a, all because of later selections of
value a for variable A. This structure can be used in the value selection heuristics

 - 42 -

to evaluate conflicts with the assigned variables. For example, if there is a
variable A selected and its value a is in conflict with an assignment B = b, we
know that a similar problem has already occurred 3 times in the past, and the
conflict A = a can be weighted with the number 3.

5.1.3. Conflict-based Statistics in Iterative Forward
Search

The IFS algorithm attempts to move from one (partial) feasible solution to
another via repetitive assignment of a selected value to a selected variable. During
each step, a variable and a value from its domain are chosen for assignment. This
may cause some hard conflicts with already assigned variables. Such conflicting
assignments are removed from the solution and they become unassigned. Finally,
the selected value is assigned to the selected variable.

Conflict-based statistics memorizes these unassignments together with the
assignment which caused them. Let us suppose that a value v0 is selected for a
variable V0. To enforce feasibility of the new assignment, some previous
assignments V1 = v1, V2 = v2, ... Vn = vn need to be unassigned (assignments V1/v1,
V2/v2, ..Vn/vn are returned by the function conflicts). As a consequence we
increment the counters

CBS[V0 = v0 → ¬ V1 = v1] ,
CBS[V0 = v0 → ¬ V2 = v2] ,
… ,
CBS[V0 = v0 → ¬ Vn = vn]

Definition 5.2 (CBS for IFS). Let Θ = (V,D,C) be a CSP, σ be
a current feasible (partial) assignment of Θ, A∈V and a∈DA
selected variable and value respectively in the current iteration.
The counters CBS[A = a→ ¬ B = b] where

B/b ∈ conflicts(σ, A, a)
 are incremented.

The conflict-based statistics is being used in the value selection criterion.
A trivial min-conflict value selection criterion selects a value with the minimal
number of conflicts with the existing assignments. This heuristics can be easily
adapted to a weighted min-conflict criterion (see Figure 5.1).

Here the value with the smallest sum of the number of conflicts multiplied
by their frequencies is selected. Stated in another way, the weighted min-conflict
approach helps to select a certain value that might cause more conflicts than
another value. The point is that these conflicts are not so frequent, and therefore
they have a lower weighted sum. Our hope is that it can considerably help the
search to get out of a local minimum.

 - 43 -

procedure selectValue (σ, A)
 bestValues = {}; bestNrConfs = 0;

 for each a∈DA do
 nrConfs = 0;
 for each B/b ∈ conflicts (σ, A, a) do
 nrConfs += 1+CBS[A=a -> B ≠b];
 if (bestValues is empty) or (bestNrConfs > nrConfs) then
 bestValues = {a}; bestNrConfs = nrConfs;
 else if (bestNrConfs == nrConfs) then

 bestValues = bestValues ∪ {a};
 end if
 end for

 a = randomly selected a value from bestValues;
 for each B/b ∈ conflicts (σ, A, a) do
 CBS[A=a -> B ≠b]++;
 end for

 return a;
end procedure

Fig. 5.1. Weighted min-conflict value selection criterion.

Space Complexity
Let us study the space complexity of the data structure needed for conflict-

based statistics. We will consider two different variables Va and Vb linked by
a constraint prohibiting concurrent assignments Va = va and Vb = vb. In the worst
case, a counter exists for each pair of such possible assignments Va = va and
Vb = vb. However, each increment of a counter in the statistics means an un-
assignment of an assigned variable. Therefore each counter CBS[Va = va → ¬ Vb =
vb] = n in the statistics means that there was an assignment Vb = vb which was
unassigned n times when va was assigned to Va.

Lemma 5.1 (space complexity of CBS in IFS). The total sum of all
counters in the CBS plus the current number of assigned variables
equals to the number of processed iterations plus the number of
assigned variables in the initial assignment.

∑{CBS(Va=va→¬Vb=vb) | Va,Vb∈V,va∈Dva, vb∈Dvb}+ |σ| = iter + |α|

where α is the initial assignment (the one IFS started from), iter is the
number of iterations processed so far and σ is the current assignment
(i.e., the assignment after iter-th iteration).

Proof: The Lemma 5.2 is a direct consequence of the fact that there is
exactly one assignment done in every iteration step. There were |α| variables
assigned before IFS started and iter assignments made so far. After iter-th
iteration, there are |σ| variables assigned. So, there were |α| + iter - |σ|

 - 44 -

unasignments in the past iter iterations and this is also the number of increments
in CBS made.□

Therefore, if the above described hash table (which is empty at the

beginning and does not contain empty counters) is used, the total number of all its
counters will never exceed the number of iterations processed so far.

Extensions
We plan to study the following extensions of the conflict-based statistics:

• If a variable is selected for an assignment, the above presented
structure can also tell how many potential conflicts a value can cause
in the future. In the above example, we already know that four times a
later assignment of A = a caused that value c was unassigned from B.
We can try to minimize such future conflicts by selecting a different
value of the variable B while A is still unbound.

• The memorized conflicts can be aged according to how far they have
occurred in the past. For example, a conflict which occurred 1000
iterations ago can have half the weight of a conflict which occurred
during the last iteration or it can be forgotten at all.

Furthermore, the presented conflict-based statistics can be used not only
inside the solving mechanism. The constructed „implications“ together with the
information about frequency of their occurrences can be easily accessed by users
or by some add-on deductive engine to identify inconsistencies and/or hard parts
of the input problem. The user can then modify the input requirements in order to
eliminate problems found and let the solver continue the search with this modified
input problem. Actually, this feature allows discovery of all inconsistent data
inputs during solution of the Purdue University timetabling problem.

5.1.4. Conflict-based Statistics in Local Search
Local search algorithms perform an incomplete exploration of the search

space by repairing an infeasible complete assignment γ. In each iteration step, a
new assignment γ’ is selected from the neighbouring assignments N(γ) of the
current assignment γ. A neighbourhood of an assignment can be defined in many
different ways, for instance, a neighbour assignment can be an assignment where
exactly one variable is assigned differently. This way, a single variable is
reassigned in each move.

From the conflict-based statistics’ point of view, we would like to prohibit
a move (a selection of a neighbouring assignment) which repetitively causes the
same inconsistency. An inconsistency can be identified by a variable whose
assignment becomes inconsistent with assignments of some other variables, or a
constraint which becomes violated by the move.

 - 45 -

Definition 5.3 (neighbouring assignments). Let Θ = (V,D,C) be a
CSP, γ be a complete (but potentially infeasible) assignment of Θ.
A set of neighbouring assignments is denoted by N(γ) ⊆ Ψ, where
Ψ is the set of all complete assignments Ψ={σ | σ = {v1/a1, …,
vn/an} & ∀i ai∈Dvi & |σ|=|V| }.

 Usually, every assignment λ∈N(γ) has to fulfil some property,
e.g., there is a metrics M (e.g., a number of differently assigned
variables) and a threshold τ, stating

∀λ∈N(γ) M(λ,γ) < τ.

Simply, in each iteration step, one or more variables are reassigned. These
reassignments can cause that one or more unchanged variables become
inconsistent with the new assignment. This means that there is a constraint which
was satisfied by the previous assignment and it is violated in the new assignment.
The reason is that it prohibits concurrent value assignment of some unchanged
variable(s) and some reassigned variable(s). The conflict-based statistics can
memorize this problem (i.e., unchanged variables become inconsistent) together
with its reason (i.e., reassigned variables). Moreover, we can use the same
structure of counters CBS[Va = va → ¬ Vb = vb] = cab as above.

More precisely, we have reassigned variables V1, V2, ... Vn that caused
unchanged variables W1, W2, ... Wm to become inconsistent. Let us suppose that vi
is a new value assigned to Vi and wj is a value assigned to Wj. If a constraint
between Vi and Wj becomes violated, the counter CBS[Vi = vi → ¬ Wj = wj] is
incremented. Note also that such constraint might operate over more than two
variables and some of its variables might already be inconsistent in the prior
iteration because of another constraint.

Definition 5.4 (reassigned variables). Let Θ = (V,D,C) be a CSP, α, β
be complete (infeasible) assignments where β∈N(α), newly
assigned variables are

diffv(α,β)={v | v∈V & v/a∈α & v/b∈β & a≠b}
Definition 5.5 (newly violated assignments). Let Θ = (V,D,C) be a

CSP, α, β complete (infeasible) assignments where β∈N(α) and
v∈ diffv(α,β). A set of newly violated assignments is
violv(α,β,v)={w/b∈α∩β | ∃c∈C v,w∈dom(c) & c(α) & ¬c(β)}

Definition 5.6 (variable-based CBS for LS). In each iteration step (let
β∈N(α) is selected), the counters CBS[v = a→ ¬ w = b] where

v∈ diffv(α,β) & v/a∈ β & w/b∈ violv(α,β,v)
 are incremented.

For example, there might be values v1 and v2 assigned to variables V1 and
V2 respectively. As a consequence two constraints become inconsistent:

• the constraint C1 prohibits the assignment V1 = v1 with an existing
assignments W1 = w1 and W2 = w2,

 - 46 -

• the constraint C2 prohibits both assignments V1 = v1, V2 = v2 with
W3 = w3 and W4 = w4, but W4 = w4 is already inconsistent because of
some other constraint C3.

Then, the following counters are incremented:

• CBS[V1 = v1 → ¬ W1 = w1] and CBS[V1 = v1 → ¬ W2= w2] wrt. C1
• CBS[V1 = v1 → ¬ W3 = w3] and CBS[V2 = v2 → ¬ W3 = w3] wrt. C2

The conflict-based statistics is used in the move selection criterion. For
example, if there is a reassignment Va = va contained in the move, and it causes an
unchanged assignment Vb = vb to become inconsistent, such move can be
weighted by the counter CBS[Va = va → ¬ Vb = vb].

As for space complexity of the CBS structure, again, there could be a
counter for each pair of possible assignments Va = va and Vb = vb, where Va ≠ Vb
and there is a constraint between variables Va and Vb which can prohibit
concurrent assignments Va = va and Vb = vb. Unfortunately, we cannot precisely
limit the speed how the above structure will grow as we did for IFS, but since the
number of conflicts should decrease during the search, the structure should grow
slowly as well.

In some cases, it might be easier to identify an inconsistency not as

a variable whose assignment becomes inconsistent but a constraint which
becomes violated by the move. For instance, if there are only binary constraints in
the problem, it is easier to check that both variables are assigned and compatible
than to check whether there is a constraint connected to a value which is not
consistent. On the other hand, sometimes it is easier (and even more
straightforward) to check the consistency of variables. For instance, we might
rather check if two lectures which take place in the same room are not overlapping
than to check that the room constraint is violated. Note that for Random
Placement Problem there is only one constraint, but it is connecting all the
variables (see Chapter 6.2).

The above described conflict based statistics can also be used for
memorizing the reason, why a constraint becomes inconsistent. Now, it is an array

CBS[Va = va → ¬ Cb],

where Cb is the constraint which becomes violated because of the recent
assignment Va = va.

Definition 5.7 (newly violated constraints). Let Θ = (V,D,C) be a
CSP, α, β be complete (infeasible) assignments where β∈N(α)
and v∈ diffv(α,β). A set of newly violated constraints for v is

violc(α,β,v)={c∈C | v∈dom(c) & c(α) & ¬c(β)}
Definition 5.8 (constraint-based CBS for LS). In each iteration step

(let β∈N(α) is selected), the counters CBS[v = a→ ¬ c] where
v∈ diffv(α,β) & v/a∈β & c∈ violc(α,β,v)

 are incremented.

 - 47 -

In the example above, if the constraints C1 and C2 become inconsistent by
the move where values v1 and v2 are assigned to variables V1 and V2 (note that C3
is already inconsistent because of the assignment W4 = w4 and some others), the
following counters are incremented:

• CBS[V1 = v1 → ¬ C1] since C1 prohibits V1 = v1 to be assigned together
with the existing assignments W1 = w1 and W2 = w2.

• CBS[V1 = v1 → ¬ C2] and CBS[V2 = v2 → ¬ C2] since C2 prohibits both
assignments V1 = v1, V2 = v2 with W3 = w3 and W4 = w4.

5.2. Maintaining Arc Consistency

Because the presented IFS algorithm works with partial feasible
assignments, it can be easily extended to maintain arc consistency during the
search. This can be done by using well known dynamic arc consistency
algorithms (e.g., by AC|DC algorithm published in [NB94] or DnAC6 published
in [Deb96]) which are widely used in Dynamic CSPs [VJ03].

Moreover, since only the constraints describing assignments (constraint
Variable = value) can be added and removed during the search, approaches based
on explanations [JDB00, Jus03] can be used as well. In this section, we present
how these explanations, which are traditionally used in systematic search
algorithms, can be used in our iterative forward search approach in order to
maintain arc consistency.

5.2.1. Related Works
Arc consistency (AC) technique removes values from variables’ domains

that are inconsistent with constraints. In particular, the pair of variables (Vi,Vj) is
arc consistent if and only if for every value x in the current domain of Vi which
satisfies the constraints on Vi there is some value y in the domain of Vj such that
V i = x and Vj = y is permitted by the constraint between Vi and Vj (see Definition
2.6).

There are several arc consistency algorithms starting from AC-1 [Mac77]
and concluding somewhere at AC-7 [BF99]. These algorithms are based on
repeated revisions of arcs till a consistent state is reached or some domain
becomes empty. The most popular among them are AC-3 [Mac77], AC-3.1
[ZY01], AC2001 [BR01], AC-4 [MH86] and AC-6 [Bes94]. The AC-3 algorithm
performs re-revisions only for those arcs that are possibly affected by a previous
revision. It does not require any special data structures as opposed to AC-4 or
AC-6 that work with individual pairs of values to eliminate potential inefficiency
of checking pairs of values again and again.

Arc consistency algorithms can be easily adapted to add constraints
incrementally. However, they are ineffective to relax a constraint because they are
not able to determine the set of values that must be restored in the domain. So, to

 - 48 -

remove a constraint with these algorithms we have to reset the domains and to add
all the remaining constraints on the initial CSP.

In AC|DC algorithm published in [NB94], which is based on AC-3, a
constraint retraction is done in three steps: the first one proposes a set of
restorable values for the variables connected by the deleted constraint. Then, the
consequences of these potential additions are propagated throughout the constraint
network. Finally, arc consistency is applied starting from the variables whose
domain has been enlarged, working only on the restorable values to filter out the
ones that are inconsistent with respect to the relaxed problem.

In the arc-consistency algorithm DnAC-4 published in [Bes91], a
justification for each deleted value is stored. The algorithm uses these
justifications to determine the set of values that have been removed because of the
relaxed constraint and so can process relaxations incrementally. DnAC-4 is an
adaptation of AC-4 algorithm. There is also an algorithm DnAC-6 [Deb96] which
is based on AC-6 algorithm.

The explanation-based approach [JDB00, Jus03] also memorizes why the

value was removed from the variable’s domain:

Definition 5.9 (explanation). An explanation,
V i ≠ vi ← (V1 = v1 & V2 = v2 ... & Vj = vj)

 describes that the value vi cannot be assigned to the variable Vi
since it is in a conflict with the existing assignments V1 = v1,
V2 = v2, ... Vj = vj.

This means that there is no complete feasible assignment containing assignments
V1 = v1, V2 = v2, ... Vj = vj together with the assignment Vi = vi (these equalities
form a no-good set [Jus03]).

So, for instance, if the value v1 is no longer assigned to the variable V1, the
inequality Vi ≠ vi needs to be revised. If there is no other reason why the value vi
cannot be assigned to the variable Vi, vi is returned to the domain of the variable
V i. Otherwise, there is a new explanation attached to the inequality Vi ≠ vi.

5.2.2. IFS with MAC
During the arc consistency maintenance, when a value is deleted from a

variable’s domain, the reason (forming an explanation) can be computed and
attached to the deleted value. Once a variable (say Vx with the assigned value vx)
is unassigned during the search, all deleted values which contain a pair Vx = vx in
their explanations need to be revised. Either such value can be still inconsistent
with the current (partial) assignment (a different explanation is attached to it in
this case) or it can be returned back to its variable's domain. Arc consistency is
maintained after each iteration step, i.e., the selected assignment is propagated
into the not yet assigned variables. When a value vx is assigned to a variable Vx,
an explanation Vx ≠ vx' ← Vx = vx is attached to all values vx' of the variable Vx,
different from vx.

 - 49 -

In the case of forward checking (only constraints going from assigned
variables to unassigned variables are revised), computing explanations is rather
easy. A value vx is deleted from the domain of the variable Vx only if there is
a constraint which prohibits the assignment Vx=vx because of the existing
assignments (e.g., Vy = vy, … Vz = vz). An explanation for the deletion of this
value vx is then Vx ≠ vx ← (Vy = vy & ... Vz = vz), where Vy = vy & ... Vz = vz are
assignments contained in the prohibiting constraint. In case of arc consistency,
a value vx is deleted from the domain of the variable Vx if there is a constraint
which does not permit the assignment Vx = vx with other possible assignments of
the other variables in the constraint. This means that there is no support value (or
combination of values) for the value vx of the variable Vx in the constraint. An
explanation is then a union of explanations of all possible support values for the
assignment Vx = vx of this constraint which were deleted. The reason is that if one
of these support values is returned to its variable's domain, this value vx may be
returned as well (i.e., the reason for its deletion has vanished, a new reason needs
to be computed).

Note that in our implementation, we consider all constraints to be binary.
Arc consistency is maintained over a non-binary constraint, only when such
a constraint implements an optional method isConsistent stating whether the
constraint is satisfied with an assignment of two of its variables, i.e.,

isConsistent(c,A,a,B,b) ⇔ c(Θ{A/ a,B/b}),

where Θ=(V,D,C) is a CSP, c∈C, A,B∈dom(c), A≠B, a∈DA, b∈DB. For instance,
in case of a resource constraint, method isConsistent checks whether the given
two activities consuming the same resource are overlapping in time or not. Then,
a value a is removed from the domain of variable A if there is a constraint c and a
variable B∈dom(c), and there is no b∈DB so that isConsistent(c,A,a,B,b) is true
(there are no support values in the domain of variable B). An explanation for A≠a
is a union of explanations of all values b’ that were deleted from DB for which
isConsistent(c,A,a,B,b’) holds true.

procedure ifs-mac(V,D,C)

 σ = β = {}; // current and best assignments
 // enforce arc consistency of the input problem
 if (makeAC() is false) return σ;
 while canContinue (σ) do

 A = selectVariable (σ);
 a = selectValue (σ, A);
 for each B/b ∈ conflicts (σ, A, a) do unassign-mac (σ,B,b);

 assign-mac (σ, A,a);
 if better (σ, β) then β = σ;
 end while
 return β;
end procedure

Fig. 5.2. The iterative forward search algorithm with MAC

 - 50 -

As for the arc consistency maintenance inside IFS algorithm, the IFS
algorithm scheme remains as it is described in the previous chapter, we only need
to enforce arc consistency of the initial assignment and to maintain the arc
consistency during the search. The maintenance of arc consistency is done during
unassignment of the conflicting assignments (returned by function conflicts) and
during assignment of the selected value to the selected variable (see Figure 5.2).

An explanation Vx ≠ vx ← (Vy = vy & ... Vz = vz) is denoted by the table
EXP[Vx≠vx] that contains a set of assignments explaining the cause of the removal
of value vx from the domain of the variable Vx , i.e., {Vy/vy, ... Vz/vz}. If the value
vx is in the domain of variable Vx, EXP[Vx≠vx] is null. Note that we do not
explicitly change the domains of variables during the search, but a current domain
of a variable A is defined by the set {a∈DA | EXP[A≠a] is null}, where DA is the
initial domain of the variable A (after the problem is made arc consistent).

An example implementation of the arc consistency maintenance is
indicated in the Figure 5.3. It is an extension of the IFS algorithm that only
enforces assignment feasibility (see Definition 4.3) during the search. Other
possibility is to put all this logic into conflicts function which returns the
assignments that needs to be unassigned in order to make the problem consistent
respecting some given consistency technique ζ (see Definition 4.4).

Procedure assign-mac(σ, A, a) enforces arc consistency of the new
assignment σ ∪ {A/ a}. If we allow an inconsistent value a of variable A to be
selected by the value selection heuristics (a is not in the current domain of the
variable A, i.e., there is an explanation attached to A≠a), the value a needs to be
returned into the domain of variable A first. This can be done by repeated
selection and unassignment of one of the assignments from the explanation of
A≠a, until the value a is returned to the domain of variable A.

Procedure unassign-mac(σ, A, a) “undos” the propagations made by the
assignment σ ∪ {A/a} that are consistent with the assignment σ. It means that all
explanations that contain assignment A/a need to be revised. This is done via
recomputation of all of these explanations followed by arc consistency
maintenance over those which are not consistent with the assignment σ (the
consistent values are returned into their variables’ domains).

Note that the sets of current support values (returned by function
currentSupports) do not need to be computed over and over, but they can be pre-
computed at the beginning of the search and then maintained during the search,
like it is usually done in AC-4 algorithm [MH86].

 - 51 -

procedure assign-mac (σ, A, a)
 while (EXP[A ≠a] is not null) do
 select B/b from EXP[A ≠a];
 unassign-mac (σ, B, b);
 end if
 //perform the assignment
 σ = σ ∪ {A/a};
 //adapt explanations of the given variable
 queue = {};
 for each a’ ∈ D A so that a ≠a’ and EXP[A ≠a’] is null do
 EXPL(A≠a’) = {A/a};
 queue += A/a’;
 end for
 propagate (queue);
end procedure

procedure unassign-mac (σ, B, b)
 //perform the unassignment
 σ = σ - {B/b};
 //remove explanations that contain B/b
 back = {};
 for all A/a where B/b ∈ EXP[A≠a] do
 EXP[A ≠a] = null ;
 back += A/a;
 end for
 //and revise values that have an explanation remo ved
 queue = {};
 for each A/a ∈ back do
 //if variable A is assigned to some other value a’:
 // attach an explanation A ≠a <- {A=a’}
 // this is needed because variables can be una ssigned in a
 // different order they were assigned
 if (∃a’ ∈DA a ≠a’ & A/a’ ∈σ) then
 EXP[A ≠a] = {A/a’};
 queue += A/a;
 else
 revise (A,a,queue);
 end if
 end for
 //enforce arc consistency of the new solution
 propagate (queue);
end procedure

//all values of B supporting assignment A/a in cons traint c
procedure supports (c, A, a, B)
 sup = {};
 for each b ∈ D B do
 if isConsistent (c, A, a, B, b) then sup += b;
 end for
 return sup;
end procedure

 (continues on the next page)

 - 52 -

//all values from the current domain of B supporting assignment A/a
 //in constraint c
procedure currentSupports (c, A, a, B)
 sup = {}; //go only over variables of the current domain of B
 for each b ∈ D B so that EXP[B ≠b] is null do
 if isConsistent (c, A, a, B, b) then sup += b;
 end for
 return sup;
end procedure

 //explanation of A ≠a when there is no support value from the
 //current domain of variable B in constraint c
procedure computeExplanation (c, A, a, B)
 expl = {};
 for each b ∈ supports (c, A, a, B) do

 expl = expl ∪ EXP[B ≠b];
 end for
 return expl;
end procedure

 //revise consistency of the assignment A/a, add i t into the queue
 //when it is not consistent (i.e., there is a con straint c and a
 //variable B so that there are no current support from B that
 //satisfies constraint c with the assignment A/a
procedure revise (A, a, queue)
 for each constraint c so that A ∈dom(c) and each B ∈dom(c) do
 if (currentSupports (c,A,a,B) is empty) then
 EXP[A≠a] = computeExplanation (c, A, a, B);
 queue += A/a;
 end if
 end for
end procedure

 //propagate the assignments that are no longer cons istent –
 //i.e., check whether there are some other values that are
 //no longer supported (which were initially suppo rted by the
 //assignments in the queue)
procedure propagate (queue)
 while (queue not empty) do
 A/a <- remove and return first element from queue;
 for each constraint c so that A ∈dom(c) and each B ∈dom(c) do
 for each b ∈ currentSupports (c,A,a,B) do
 if (currentSupports (c,B,b,A) is empty) then
 EXP[B≠b] = computeExplanation (c, B, b, A);
 queue += B/b;
 end if
 end for
 end for
 end while
end procedure

Fig. 5.3. IFS with MAC – changes in assign and unassign procedures.

In traditional dynamic arc consistency algorithms (e.g., AC|DC, DnAC, ...)
the value selection function chooses a value only among the values in the current
domain of the variable, i.e., among the values that are not pruned by arc

 - 53 -

consistency. Using the presented explanations-based approach gives us more
flexibility since we know the cause of deletion of a deleted value (each deletion
has an explanation attached). For instance, in the value selection function, we can
select a value not only from the current domain of the selected variable but also a
value which was previously “deleted” via MAC. If a deleted variable is selected,
it can become feasible by repeatedly unassigning a selected value from its
explanation until the value is returned to the selected variable's domain.

For instance, in the following chapter, we compare two possibilities how
to treat a case when there is a variable with an empty domain (i.e., all its values
were deleted via MAC) detected. In the first case (denoted IFS MAC), while there
is a variable with an empty domain, the algorithm selects and unassigns a variable
that is present in explanations of values of the variable with an empty domain
(a probability of a selection of a variable corresponds with the frequency of
presence of the variable in the explanations of values of the empty domain
variable). In the second case (denoted IFS MAC+), the algorithm continues
extending the solution even when there is a variable with an empty domain. If the

selected variable does not contain any value in the current domain, one of
its removed values is selected (via min-conflict value selection) and returned into
the selected variable’s domain by repeatedly unassigning a randomly selected
value from its explanation. Note that the second variant is more suited for a
problem where we want to compute the largest feasible solution (in the number of
assigned variables) in case of an over-constrained problem.

5.3. IFS as Dynamic Backtracking with MAC

In this section, we describe how the presented iterative forward search
framework can be used to mimic dynamic backtracking (DB) [Gin93] search with
the arc consistency maintenance (MAC) [Bes91]. In a sense, the presented IFS
algorithm with MAC can be seen as an extension of DB with MAC, e.g.,
described in [JDB00], towards the local search based methods.

5.3.1. Related Works
Dynamic backtracking algorithm is described in Figure 5.4 (taken over

from [JDB00]). Procedure dbt performs the main loop which tries to assign values
to variables until a complete consistent assignment has been found. Procedure
assignAndCheck determines whether the new partial solution (including the new
assignment A/a) is consistent. If not, this procedure returns a nogood (a set of
assignments responsible for the dead-end), explaining the failure. In order to
restore a coherent state of computation, the procedure handleContradiction jumps
to another consistent partial assignment. Domains and explanations are restored
by the procedure updateDomains.

 - 54 -

procedure dbt (V, D, C)
 σ = {}; //current solution
 while (σ is not complete) do
 A/a = chooseAssignment (σ);
 E = assignAndCheck (σ, A, a);
 if (E is not success) then handleContradiction (E, σ);
 end while
 return σ;
end procedure

procedure assignAndCheck (σ, A, a)
 for each a’ ∈DA so that a ≠a’ do
 EXP[A≠a’] = {A/a};
 end for

 σ = σ ∪ {A/a}; D A = {a};
 c = checkConstraints (σ,A);
 if (c is success) then return success ;
 return {A/a} ∪ {B/b | B ∈dom(c) & B/b ∈σ};
end procedure

procedure checkConstraints (σ,A)
 for each constraint c so that A ∈dom(c) do
 if (c not satisfied with σ) then return c;
 end for
 return success;
end procedure

procedure handleContradiction (E, σ)
 if (E is empty) then return fail ;
 A/a <- most recent assignment of E;
 updateDomains ({B/b | A/a ∈ EXP[B ≠b]});
 σ = σ – {A/a}; D A = D A – {a};
 EXP[A ≠a] = E – {A/a};
 if (D A is empty) then
 E’ = union of EXP[A ≠a] for all values a;
 handleContradiction (E’, σ);
 end if
end procedure

procedure updateDomains (back)
 for each B/b ∈ back do
 EXP[B ≠b] = null ;
 D B = D B ∪ {B/b};
 end for
end procedure

Fig. 5.4. Dynamic Backtracking

Procedure checkConstraints checks whether the constraints are consistent
with the new assignment. If not, this procedure returns such a failing constraint.
From that constraint, assignAndCheck computes a nogood. This nogood contains
only the assignments involved in the failure.

Procedure handleContradiction is the contradiction handling mechanism.
The assignment to be undone is determined and backtracking (or more exactly

 - 55 -

backjumping) is achieved by removing irrelevant nogoods which is performed by
the updateDomains procedure.

In fact, dynamic backtracking does not perform real backtracks. When a
dead-end occurs, it reconsiders only the most recent assignment that caused the
contradiction. Especially, all the assignments that did not cause the dead-end
remain unchanged. This is why dynamic backtracking has an additive behaviour
on independent sub-problems.

In [JDB00], constraint propagation is integrated into the algorithm scheme
above. First, when a failure occurs, computation of nogoods (the variable
assignments in the failing constraint) is extended. Effects of propagation (value
removals) are taken into account: eliminating explanations produced by the
filtering algorithm need to be kept. Second, when an assignment is being undone,
putting back in the domains values with irrelevant explanations is not sufficient
since there may exist another relevant explanation for the deleted value. Value
restoration needs to be confirmed by the propagation algorithm. This is similar to
what is done for maintaining arc-consistency in dynamic CSPs.

5.3.2. IFS as Dynamic Backtracking with MAC
Dynamic backtracking with MAC can come out of the above presented

IFS with MAC via the following modifications and/or restrictions. The purpose of
this chapter is to show that the incomplete (local search based) iterative forward
search algorithm can be turned into a complete (backtracking based). For more
details about dynamic backtracking algorithm with MAC see [JDB00].

• Variable selection function selectVariable always returns an
unassigned variable. If there are one or more variables with empty
domains, one of them is returned in the variable selection function.

• Value selection function selectValue always returns a value from the
selected variable's domain (i.e., not-deleted value); if there is no such
value, it returns null.

• When all the variables are assigned, the solver terminates and returns
the found solution (termination condition function canContinue). In
case of branch&bound technique the existence of a complete solution
should lower the bound so that a conflict arises, which leads to some
unassignments.

• If the selected value is null (which means that the selected variable has
an empty domain), a union of all assignments which prohibits all the
values of the selected variable (a union of assignments of all values’
explanations) is computed. The last assignment made is selected (each
variable can memorize an iteration number, when it was assigned for
the last time). This assignment has to be unassigned, all other
assignments from the computed union are taken as an explanation for
this unassignment. If the computed explanation is empty (e.g.,
Vx ≠ vx ← ∅), the value can be permanently removed from its
variable's domain because it can never be a part of a complete solution.

 - 56 -

If the computed union is empty, there is no complete solution and the
algorithm returns fail (see Figure 5.5 for details).

procedure ifs-dbt(V,D,C)

 σ = β = {}; // current and best assignments
 // enforce arc consistency of the input problem
 if (makeAC() is false) return σ;
 while canContinue-dbt (σ) do

 A = selectVariable-dbt (σ);
 a = selectValue-dbt (σ, A);
 if (a is null)
 if (backtrack (σ, A) is false) return fail ;
 end if
 else
 for each B/b ∈ conflicts (σ, A, a) do unassign-mac (σ,B,b);

 assign-mac (σ, A,a);
 if better (σ, β) then β = σ;
 end if
 end while
 return β;
end procedure

procedure backtrack (σ, A)
 E = {};
 for a in all values of variable A do

 E = E ∪ EXP[A ≠a];
 end for
 if (E is empty) return false ;
 B/b <- most recent assignment of E;

 unassign-mac (σ,B,b);
 EXP[B,b] = E – {B/b};
 return true ;
end procedure

Fig. 5.5. IFS as dynamic backtracking with MAC.

Like in the above presented IFS MAC algorithm, arc consistency
maintenance and its undo are called automatically after each assignment and
unassignment, respectively.

5.4. Summary

In this chapter, we presented various extensions of the iterative forward
search algorithm which we have described in chapter 4. The conflict-based
statistics is the most important one since it helped us to be able to find high
quality complete solutions for both the initial as well as the minimal perturbation
problem of the large lecture timetabling problem at Purdue University [MR04,
MRB05].

 - 57 -

6. Experimental Results

The iterative forward search algorithm together with all the presented
extensions has been implemented in Java. It contains a general implementation of
the iterative search algorithm. The general solver operates over abstract variables
and values with a selection of available extensions, basic general heuristics,
solution comparators, and termination functions. It may be customized to fit a
particular problem (e.g., as it has been extended for Purdue University
timetabling) by implementing variable and value definitions, adding hard and soft
constraints, and extending the parametric functions of the algorithm. For more
details about iterative forward search framework see appendixes A and B or the
API (javadoc) documentation on the attached CD-ROM. The results presented
here were computed on 3GHz Pentium 4 PC running Windows XP professional,
with 1 GB RAM and JDK 1.5.0.

The presented IFS algorithm performs an incomplete exploration of the
solution space with no guarantee of finding a complete (and optimal) solution
satisfying all the constraints. The purpose of this chapter is to experimentally
verify the following properties:

• IFS is applicable on various constraint satisfaction and optimisation
problems.

• IFS is competitive with other (mainly local-search) algorithms.
Moreover, it performs very well on optimisation problems, especially
when it is used together with the presented conflict-based statistics.

• The conflict-based statistics can be successfully used within a local
search algorithm as it is described in the previous chapter.

• IFS can be used on over-constrained problems, where there is no
complete solution.

• IFS is applicable on both initial (standard CSP) as well as minimal
perturbation problem. Moreover, we can use the same algorithm, only
with slight modifications in the variable/value selection heuristics in
the whole solution production cycle.

• IFS can be used for solving real-life large scale (timetabling)
optimisation problems.

Variations of IFS
Since the iterative forward search as it is described in chapter 4 is more

like a framework than an exact definition of a single algorithm (it needs to be
parameterised by the selection of the variable/value selection, termination and
heuristics), we study several variants of this algorithm differentiated by the choice

 - 58 -

of the value selection heuristic and the extensions described in chapter 5. The
compared algorithms are:

• IFS RW(prw) ... min-conflict selection of values with prw random
walk. This means, that with the given probability prw, a value is
selected randomly from all values of the selected variable's domain.

• IFS TS(lts) ... tabu search, where l ts is the length of tabu list which is
used to avoid cycling. Repeated selection of the same pair (variable,
value) is prohibited for the given number of subsequent iterations.

• IFS CBS ... min-conflict value selection where conflicts are weighted
according to the conflict-based statistics (as described in Chapter 5.1)

• IFS MAC ... arc-consistency maintenance; if there is a variable with
an empty domain, a variable which caused a removal of one or more of
values is selected and unassigned. This is done so that a value vx of
such a variable Vx with an empty domain is selected randomly and
a randomly selected assignment from the explanation Vx ≠ vx is
unassigned.

• IFS MAC+ ... arc-consistency maintenance; the algorithm continues
extending the solution even when there is a variable with an empty
domain. If the selected variable does not contain any value which was
not removed from its domain via MAC, one of its removed values is
selected (via min-conflict value selection).

• DBT MAC ... dynamic backtracking algorithm with arc consistency
maintenance (as described in Chapter 5.3)

• DBT FC ... dynamic backtracking algorithm with forward checking

For all these variants, an unassigned variable is selected randomly (see
Figure 6.1) and the value selection is based on min-conflict strategy (see Figure
6.2). This means that a value is randomly selected among the values whose
assignment will cause the minimal number of conflicts with the existing
assignments. The search is terminated when a complete solution is found or when
the given time limit is reached. As for the solution comparator, a solution with the
highest number of assigned variables is always selected.

procedure selectVariable (σ)
 // current (partial but feasible) assignment is the parameter
 unassigned = all variables that are not assigned in σ;
 return randomly selected variable from unassigned;
end procedure

Fig. 6.1. Variable selection criterion (IFS CBS, IFS TABU, IFS MCRW)

Because we attempt to solve large scale problems, maintaining arc
consistency (algorithms IFS MAC and DBT MAC) is based on AC3 algorithm

 - 59 -

(e.g., see [Tsa93]). For instance, in the Purdue University timetabling problem we
have about 800 variables (there is a variable for each course) with the total
number of more than 200,000 values (there is a value for each location of a course
in the timetable, including a selection of time(s), room and instructor).
Furthermore, nearly every two variables are related by some constraint, e.g.,
typically there is at least one room they can both use. Due to the memory reasons,
this prohibits any consistency method which is based on memorizing supports for
each pair of values or for each pair of value and variable.

procedure selectValue (σ, A)
 // current (partial but feasible) assignment and th e selected
 // variable are the parameters
 if (random walk) begin
 if (random()<p rw) return randomly selected value from D A;
 end
 bestNrConfs = 0; bestValues = {};
 for each a∈DA do
 η = conflicts (σ, A, a);
 if (tabu search) then
 if A/a in tabu-list then continue;
 //jump to the next value
 end if
 nrConfs = | η|;
 if (conflict-based statistics) then
 for each B/b ∈η do
 nrConfs += CBS[A=a->B ≠b];
 end if
 if (bestValues is empty) or (bestNrConfs > nrConfs) then
 bestValues = {a};
 bestNrConfs = nrConfs;
 else if (bestNrConfs == nrConfs) then

 bestValues = bestValues ∪ {a};
 end if
 end for
 a = randomly selected value of bestValues;
 if (tabu search) then
 add A/a at the end of tabu-list;
 if (|tabu-list|>l ts) then
 remove the first element from tabu-list;
 end
 if (conflict-based statistics) then
 for each B/b ∈conflicts (σ, A, a) do
 CBS[A=a->B ≠b]++;
 end for
 end if
 return a;
end procedure

Fig. 6.2. Value selection criterion (IFS CBS, IFS TABU, IFS MCRW)

 - 60 -

6.1. Binary Random CSP

In the following experiments we compare several mutations of the iterative
forward search algorithm and its improvements on the Random Binary CSP with
uniform distribution [Bes96]. A random CSP is defined by a four-tuple
(n, d, p1, p2), where n denotes the number of variables and d denotes the domain
size of each variable, p1 and p2 are two probabilities. They are used to generate
randomly the binary constraints among the variables. p1 represents the probability
that a constraint exists between two different variables and p2 represents the
probability that a pair of values in the domains of two variables connected by
a constraint is incompatible. We use a so called model B [MPSW98] of Random
CSP (n, d, n1, n2) where n1 = p1n(n-1)/2 pairs of variables are randomly and
uniformly selected and binary constraints are posted between them. For each
constraint, n2 = p2d

2 randomly and uniformly selected pairs of values are picked as
incompatible.

The following graphs (see Figures 6.3 and 6.4) present the number of

assigned variables in percentage to all variables wrt. the probability p2
representing tightness of the generated sparse problem CSP(50, 12, 250/1250, p2)
and dense problem CSP(25, 15, 198/300, p2) respectively. The average values of
the best achieved solutions from 25 runs on different problem instances within 60
second time limit are presented.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90%
tightness (p 2)

A
ss

ig
ne

d
va

ria
bl

es

IFS CBS IFS RW(1%)
IFS RW(2%) IFS RW(3%)
IFS RW(6%) IFS TS(20)
IFS TS(50) IFS TS(100)
IFS TS(200) IFS MAC
IFS MAC+ DBT FC
DBT MAC

Fig. 6.3. CSP(50, 12, 250/1250, p2), number of assigned variables.

 - 61 -

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90%
tightness (p 2)

A
ss

ig
ne

d
va

ria
bl

es

IFS CBS IFS RW(1%)
IFS RW(2%) IFS RW(3%)
IFS RW(6%) IFS TS(20)
IFS TS(50) IFS TS(100)
IFS TS(200) IFS MAC
IFS MAC+ DBT FC
DBT MAC

Fig. 6.4. CSP(25, 15, 198/300, p2), number of assigned variables.

Each of the compared algorithms was able to find a complete solution
within the time limit for all the given problems with a tightness under 30% for
CSP(50, 12, 250/1250, p2) and under 20% for CSP(25, 15, 198/300, p2). Achieved
results from min-conflict random walk, tabu search and the conflict-based
statistics seem to be very similar for this problem (tabu search seems to be slightly
worse, min-conflict slightly better than conflict-based statistics). Also, it is not
surprising that a usage of consistency maintenance techniques lowers the maximal
number of assigned variables, e.g., both dynamic backtracking with MAC and IFS
with MAC extend an incomplete solution only when it is arc consistent with all
unassigned variables. As we can see from the above figures, we can get better
results when we allow the search to continue even if there is a variable with
an empty domain.

The following graph (see Figure 6.5) presents the number of assigned
variables in percentage to all variables obtained by IFS CBS algorithm, with
respect to the probabilities p1 and p2 representing density and tightness of the
generated problem CSP(25, 15, p1, p2) respectively. The average values of the best
achieved solutions from 10 runs on different problem instances within 60 second
time limit are presented.

 - 62 -

5%

20
% 35

% 50
% 65

% 80
% 95

%

5%
20%

35%
50%

65%
80%

95%

0%

10%

20%

30%

40%
50%
60%
70%
80%
90%
100%

Assigned [%]

Tightness [%]
Density [%]

Fig. 6.5. CSP(25,15,p1,p2), number of assigned variables for IFS CBS.

Weighted Random Binary CSP (minCSP)
For the following results (Figures 6.6 and 6.7), we turned the random CSP

problem into an optimisation problem (CSOP). The goal is to minimize the total
sum of values for all variables. Note that each variable has d generated values
from 0, 1, ... d-1. For the comparison, we used CSP(50, 12, 250/1250, p2) and
CSP(25, 15, 198/300, p2) problems with the tightness p2 taken so that every
measured algorithm was able to find a complete solution for (almost) each of 10
different generated problems within the given 60 seconds time limit.

0

20

40

60

80

100

120

140

160

180

200

10% 12% 14% 16% 18% 20% 22% 24% 26% 28% 30% 32% 34%
tightness (p 2)

T
ot

al
 v

al
ue

IFS CBS IFS RW(1%)
IFS RW(2%) IFS RW(3%)
IFS RW(5%) IFS TS(20)
IFS TS(50) IFS TS(100)
IFS TS(200) IFS MAC
IFS MAC+ DBT FC
DBT MAC

Fig. 6.6. minCSP(50, 12, 250/1250, p2), the sum of all assigned values.

 - 63 -

0

20

40

60

80

100

120

140

160

10% 11% 12% 13% 14% 15% 16% 17% 18% 19% 20% 21% 22% 23% 24% 25%
tightness (p 2)

T
ot

al
 v

al
ue

IFS CBS IFS RW(1%)
IFS RW(2%) IFS RW(3%)
IFS RW(5%) IFS TS(20)
IFS TS(50) IFS TS(100)
IFS TS(200) IFS MAC
IFS MAC+ DBT FC
DBT MAC

Fig. 6.7. minCSP(25, 15, 198/300, p2), the sum of all assigned values.

All algorithms can be easily adopted to solve this minCSP problem by
selecting an assignment with the smallest value among the values minimizing the
number of conflicts. But, the conflict-based statistics can do better. Here, we can
add the value of the assignment to the number of conflicts (weighted by CBS).
Then, a value with the smallest sum of the value and the conflicts weighted by
their previous occurrences is selected. We can afford this approach because the
weights of repeated conflicts are being increased during the search, and the
algorithm is much more likely to escape from a local minimum than the other
compared algorithms.

For this problem, the presented conflict-based statistics was able to give
better results than other compared algorithms. The algorithm is obviously trying
to stick much more with the smallest values than the others, but it is able to find a
complete solution since the conflict counters are rising during the search. Such
behaviour can be very handy for many optimisation problems, especially when
optimisation criteria (expressed either by some objective function or by soft
constraints) go against the hard constraints.

Local Search
In this section we compare the presented conflict-based statistics with

various local search algorithms. For all the compared local search algorithms, a
neighbour assignment is defined as an assignment where exactly one variable is
assigned differently. The compared algorithms are:

• HC … hill-climbing algorithm always selects the best assignment
among all the neighbour assignments

• HC RW … hill-climbing random walk; with the given probability prw
a random neighbour is selected. Otherwise, the best neighbour is
selected.

 - 64 -

• HC TS(lts) … tabu search, where l ts is the length of the tabu list; the
best assignment among all the neighbour assignments is always
selected. Moreover, if such an assignment is contained in the tabu list
(a memory of the last l ts assignments), the second best assignment is
used and so on (except of an aspiration criteria, which allows to select
a tabu neighbour when the best ever found assignment is found).

• HC CBS … hill-climbing algorithm with conflict-based statistics
(constraint-based version); the best assignment is always selected as
well, but the newly created conflicts are weighted according to the
conflict-based statistics.

• MC … min-conflict algorithm selects a variable in a violated
constraint randomly. Its value which minimizes the number of
conflicting constraints is chosen.

• MC RW(Prw) … same as min-conflict, but with the given probability
Prw a random neighbour is selected.

• MC TS(lts) … same as min-conflict, but there is a tabu-list of the
length lts used.

• MC CBS … same as min-conflict, but the newly created conflicts are
weighted according to the conflict-based statistics.

Figures 6.8 and 6.9 present the number of conflicting constraints wrt. the
probability p2 representing tightness of the generated sparse problem CSP(50, 12,
250/1250, p2). The average values of the best achieved solutions from 10 runs on
different problem instances within the 60 second time limit are presented.

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90%
tightness (p 2)

N
um

be
r

of
 c

on
fli

ct
s

HC HC CBS
HC RW(1%) HC RW(2%)
HC RW(3%) HC RW(5%)
HC TS(20) HC TS(50)
HC TS(100) HC TS(200)

Fig. 6.8. CSP(50, 12, 250/1250, p2), the number of conflicting constraints for
hill-climbing algorithms.

 - 65 -

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90%
tightness (p 2)

N
um

be
r

of
 c

on
fli

ct
s

MC MC CBS
MC RW(1%) MC RW(2%)
MC RW(3%) MC RW(5%)
MC TS(20) MC TS(50)
MC TS(100) MC TS(200)

Fig. 6.9. CSP(50, 12, 250/1250, p2), the number of conflicting constraints for
min-conflict algorithms.

Figures 6.10 and 6.11 present the number of conflicting constraints wrt.
the probability p2 representing tightness of the generated dense problem CSP(25,
15, 198/300, p2).

0

10

20

30

40

50

60

70

80

90

100

110

120

130

20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90%
tightness (p 2)

N
um

be
r

of
 c

on
fli

ct
s

HC HC CBS
HC RW(1%) HC RW(2%)
HC RW(3%) HC RW(5%)
HC TS(20) HC TS(50)
HC TS(100) HC TS(200)

Fig. 6.10. CSP(25, 15, 198/300, p2), the number of conflicting constraints for
hill-climbing algorithms.

 - 66 -

0

10

20

30

40

50

60

70

80

90

100

110

120

130

20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90%
tightness (p 2)

N
um

be
r

of
 c

on
fli

ct
s

MC MC CBS
MC RW(1%) MC RW(2%)
MC RW(3%) MC RW(5%)
MC TS(20) MC TS(50)
MC TS(100) MC TS(200)

Fig. 6.11. CSP(25, 15, 198/300, p2), the number of conflicting constraints for
min-conflict algorithms.

Overall, hill-climbing algorithms produce better results than min-conflict
algorithms on the tested problems. MC CBS is slightly worse than MC RW
algorithms, but better than MC TS algorithms. As for hill-climbing, HC CBS
seems to be slightly better than all other tested algorithms on the given random
binary CSP problems. Moreover, there is no algorithm specific parameter (which
usually depends on the solved problem) unlike in the compared methods (e.g., the
length of the tabu-list).

Weighted Random Binary CSP (minCSP)
The following results (Figures 6.12 to 6.15) are computed on the weighted

random binary CSP. As for IFS, we used the problems CSP(50, 12, 250/1250, p2)
and CSP(25, 15, 198/300, p2) with the tightness p2 taken so that every measured
algorithm was able to find a complete solution for (almost) each of 10 different
generated problems within the given 60 seconds time limit.

 - 67 -

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

10% 12% 14% 16% 18% 20% 22% 24% 26% 28% 30% 32% 34%
tightness (p 2)

T
ot

al
 v

al
ue

HC HC CBS
HC RW(1%) HC RW(2%)
HC RW(3%) HC RW(5%)
HC TS(20) HC TS(50)
HC TS(100) HC TS(200)

Fig. 6.12. minCSP(50, 12, 250/1250, p2), the sum of all assigned values for
hill-climbing algorithms.

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

10% 12% 14% 16% 18% 20% 22% 24% 26% 28% 30% 32% 34%
tightness (p 2)

T
ot

al
 v

al
ue

MC MC CBS
MC RW(1%) MC RW(2%)
MC RW(3%) MC RW(5%)
MC TS(20) MC TS(50)
MC TS(100) MC TS(200)

Fig. 6.13. minCSP(50, 12, 250/1250, p2), the sum of all assigned values for
min-conflict algorithms.

 - 68 -

0

20

40

60

80

100

120

140

160

180

10% 11% 12% 13% 14% 15% 16% 17% 18% 19% 20% 21% 22% 23% 24% 25%
tightness (p 2)

T
ot

al
 v

al
ue

HC HC CBS
HC RW(1%) HC RW(2%)
HC RW(3%) HC RW(5%)
HC TS(20) HC TS(50)
HC TS(100) HC TS(200)

Fig. 6.14. minCSP(25, 15, 198/300, p2), the sum of all assigned values for
hill-climbing algorithms.

0

20

40

60

80

100

120

10% 11% 12% 13% 14% 15% 16% 17% 18% 19% 20% 21% 22% 23% 24% 25%
tightness (p 2)

T
ot

al
 v

al
ue

MC MC CBS
MC RW(1%) MC RW(2%)
MC RW(3%) MC RW(5%)
MC TS(20) MC TS(50)
MC TS(100) MC TS(200)

Fig. 6.15. minCSP(25, 15, 198/300, p2), the sum of all assigned values for
min-conflict algorithms.

Overall, hill-climbing algorithms produce better results than min-conflict
algorithms on the tested problems. As for hill-climbing, HC CBS is able to give
the best results of all tested algorithms on both problems.

 - 69 -

6.2. Random Placement Problem

The random placement problem (RPP; for more details, see
http://www.fi.muni.cz/~hanka/rpp/) seeks to place a set of randomly generated
rectangles (called objects) of different sizes into a larger rectangle (called
placement area) in such a way that no objects overlap and all objects’ borders are
parallel to the border of the placement area. In addition, a set of allowable
placements can be randomly generated for each object. The ratio between the total
area of all objects and the size of the placement area will be denoted as the filled
area ratio.

Definition 3.8 (RPP). Random placement problem is a CSP
Θ = (V,D,C) with the following properties:

• V={x 1,y1,x2,y2,…, xn,yn}
• D={Dx 1,Dy1,Dx2,Dy2,…,Dxn,Dyn}, ∀i Dxi = {minxi, minxi +1, …,

maxxi}, Dy i = {minyi, minyi +1, …, maxyi}
• C={c}, where c is the following not-overlap constraint

∀i, ∀j, i≠j ⇒ (xi+dxi≤xj ∨ xj+dxj≤xi ∨ yi+dyi≤yj ∨ yj+dyj≤yi)
where:
• n is the number of objects in RPP,
• xi,yi are coordinates of i-th object,
• minxi, minyi, maxi, maxyi are bounds of the i-th object,
• (dxi,dyi) is the size of i-th object,
• (Rx,Ry) is the size of placement area,
• ∀i 0 ≤ minxi ≤ maxxi+dxi < Rx & 0 ≤ minyi ≤ maxyi+dyi < Ry

RPP allows us to generate various instances of the problem similar to a
trivial timetabling problem. The correspondence is as follows: the object
corresponds to a course to be timetabled – the x-coordinate to its time, the y-
coordinate to its classroom. For example, a course taking three hours corresponds
to an object with dimensions 3×1 (the course should be taught in one classroom
only). Each course can be placed only in a classroom of sufficient capacity – we
can expect that the classrooms are ordered increasingly in their size so each object
will have a lower bound on its y-coordinate.

In this chapter, we present capabilities of iterative forward search on the
random placement problem, in solving both initial (i.e., standard CSP) as well as
minimal perturbation problem.

6.2.1. Initial Problem
The following experiments were accomplished on 8 sets of problems, each

concerning 200 objects with filled area ratio of the range of 75%, 80%, 85%, …
100%. Each set contains 50 different problems with the given filled area ratio.
Clearly all problems in the last two sets are over-constrained. However, this may
also be true for other problems with the filled area ratio “close” to 100 %. All

 - 70 -

these problem instances are taken from http://www.fi.muni.cz/~hanka/rpp/. The
sizes of the generated objects are 2x1 (80.4% of all objects), 3x1 (16.6% of all
objects), 4x1 (2.6% of all objects) and 6x1 (0.4% of all objects).

Table 6.16 shows the number of problem instances completely solved in
each set by the tested algorithms within 5 minute time limit.

Filled Area Ratio: 75% 80% 85% 90% 95% 100%
IFS CBS 50 50 50 45 47 33
IFS RW(1%) 50 50 50 45 47 38
IFS RW(2%) 50 50 50 45 47 38
IFS RW(3%) 50 50 50 45 47 37
IFS RW(5%) 50 50 50 45 47 37
IFS TS(20) 50 50 50 45 46 37
IFS TS(50) 50 50 50 45 46 37
IFS TS(100) 50 50 50 45 47 35
IFS TS(200) 50 50 50 45 46 35
IFS MAC 49 48 43 15 1 0
IFS MAC+ 50 50 47 23 8 1

Fig. 6.16. Number of problems solved for each set of problems.

Figure 6.17 presents the average time needed to find a complete solution
with respect to the filled area ratio. The average numbers over all problem
instances from each set of problems are presented.

0

5

10

15

20

25

30

35

75% 80% 85% 90% 95% 100%

FillFactor [%]

T
im

e
[s

]

IFS CBS
IFS RW(1%)
IFS RW(2%)
IFS RW(3%)
IFS RW(5%)
IFS TS(20)
IFS TS(50)
IFS TS(100)
IFS TS(200)
IFS MAC
IFS MAC+

Fig. 6.17. Average time wrt. filled are ratio.

Dynamic backtracking algorithm (with either MAC or FC) was not able to
solve any problem instance at all, the average number of assigned variables in

 - 71 -

percentage to all variables for DBT MAC were 90.6%, 89.9%, 84.5%, 84.5%,
83.3% and 81.68% for filled area ratio of 75%, 80%, 85%, 90%, 95% and 100%
respectively.

In [Ver03] a comparison of limited assignment number search (LAN)
[VR02], dynamic backtracking (DB) [Gin93], limited discrepancy search (LDS)
[HG95] and simulated annealing (SA) [KGV83] on the same problem instances is
made. Neither DB nor LDS were able to find any complete solution on the given
instances. The comparison of LAN and SA algorithms from this work is presented
on Figure 6.18.

Filled Area Ratio: 75% 80% 85% 90% 95% 100%
LAN 49 50 47 26 6 0
SA 47 44 40 22 13 6

Fig. 6.18. Number of problems solved for each set of problems.

6.2.2. Minimal Perturbation Problem
In this chapter we present some experiments on RPPs for solving minimal

perturbation problem. MPP instances were generated as follows: First, the initial
solution was computed. The changed problem differs from the initial problem by
input perturbations. An input perturbation means that both x coordinate and y
coordinate of a rectangle must differ from the initial values, i.e. x≠xinitial &
y≠yinitial. For a single initial problem and for a given number of input
perturbations, we can randomly generate various changed problems. In particular,
for a given number of input perturbations, we randomly select a set of objects
which should have input perturbations. The solution to MPP can be evaluated by
the number of additional perturbations. They are given by subtraction of the final
number of perturbations and the number of input perturbations.

The following experiments were accomplished with IFS CBS algorithm on
7 problems, each concerning 200 objects with different filled area ratio. Filled
area ratio is displayed in the parenthesis next to the name of the problem instance.
The tested problem instances are available on the attached CD-ROM.

Figure 6.19 shows the number of additional perturbations as a function of
the number of input perturbations. Both numbers are in percentage to the number
of objects in the problem (which is 200).

The IFS CBS algorithm was able to find a complete feasible solution in
each test run. Moreover, the number of additional perturbations was very low.
Similarly as in the input problem, IFS RW and IFS TS were able to return very
similar results as IFS CBS.

 - 72 -

0.0%

0.1%

0.2%

0.3%

0.4%

0.5%

0.6%

0.7%

0.8%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Initial Perturbations

A
dd

iti
on

al
 P

er
tu

rb
at

io
ns

gen22 (80.36%)

gen12 (92.09%)

gen3 (92.95%)

gen43 (93.16%)

gen30 (93.38%)

gen19 (94.02%)

gen28 (94.02%)

Fig. 6.19. Additional perturbations wrt. input perturbations.

In [RBM04], we proposed a branch-and-bound algorithm based on
an incomplete LAN (limited assignment search) algorithm [VR02] to solve MPP
problems. The Figure 6.20 presents the results from [RBM04], where the IFS
algorithm was compared with the proposed branch-and-bound algorithm on the
random placement problem. We used fifty initial problems and five MPPs per an
initial problem. We compared the algorithms on the problems consisting of 100
objects with filled area ratio 80% and we did the experiments for input
perturbations from 0 to 100 with the step 4. Thus 0 to 100% relative input
perturbations are covered.

The compared branch-and-bound algorithm was implemented in SICStus
Prolog with the use of disjoint2 global constraint [COC97] over x-coordinates and
y-coordinates to ensure that the objects will not overlap. Unfortunately, this
represents a difference in the notion of the consistency of a partial assignment
between the compared branch-and-bound and IFS algorithms.

Figure 6.20 shows the number of additional perturbations, the number of
assigned variables, and the CPU time as a function of the number of input
perturbations for both algorithms. We expect the comparison to be the most
meaningful for a smaller number of input perturbations (up to about 25%) because
this is the area of the highest interest for MPPs. Here the branch-and-bound
algorithm seems to be comparable with IFS solver in terms of the solution quality.
Still, the IFS algorithm is much faster there.

 - 73 -

0

0,2

0,4

0,6

0,8

1

1,2

1,4

0 8 16 24 32 40 48 56 64 72 80 88 96

Input pertubations

A
dd

iti
on

al
 p

er
tu

rb
at

io
ns

99,6

99,65

99,7

99,75

99,8

99,85

99,9

99,95

100

100,05

0 8 16 24 32 40 48 56 64 72 80 88 96

Input perturbations

A
ss

ig
ne

d
va

ria
bl

es

0

0,5

1

1,5

2

2,5

3

0 8 16 24 32 40 48 56 64 72 80 88 96

Input perturbations

T
im

e
(s

)

Fig. 6.20. Comparison of the IFS (♦) with branch-and-bound algorithm (■).

6.3. Purdue Timetabling Problem

In this chapter, we present capabilities of iterative forward search on the
real-life course timetabling problem of Purdue University (see chapter 3.4 for the
description of the problem). Results from solving both initial as well as minimal
perturbation problems are presented. Comparison of solutions given by the IFS
algorithm with a hand-made solution is also an important part of this chapter.

The following experiments were performed on the complete Fall 2004 data
set, including 830 classes to be placed in 50 classrooms. The classes included
represent 89,677 course requirements for 29,808 students. We have achieved
similar results with Fall 2001, Spring 2005 and Fall 2005 data sets as well, even
though they are quite different in the number of requirements (Fall 2004 is the
most constrained one out of these four data sets). See the following table for more
details. The total number of hours represents the number of hours allocated by
a class summed over all classes. The total number of all placements represents the
number of all possible placements (i.e., placements which do not break any unary
hard constraint) of a class summed over all classes.

 - 74 -

Data set (term) Fall 2001 Fall 2004 Spring 2005 Fall 2005
Total number of classes 747 830 793 856
Total number of meetings 1630 1791 1685 1810
Total number of used half-hours 3648 4060 3862 4096
Total number of rooms 41 50 50 51
Total number of group constraints 153 171 147 178
Total number of students 28994 29810 26087 29318
Total number of course requirements 81328 89677 74923 86874
Total number of all values 210466 168314 186892 221577

Fig. 6.21. Comparison of data sets for Purdue University Timetabling

Besides the discussed IFS solver, the timetabling application for Purdue
University also contains a web-based graphical user interface (written using Java
Server Pages) which allows management of several versions of the data sets (input
requirements, solutions, changes, etc.), browsing the resultant solutions (see
Figure 6.22), and tracking and managing changes between them.

Fig. 6.22. Generated timetable in web-based graphical user interface.

Student Scheduling
Many courses at Purdue University consist of several sections, with

students enrolled in the course divided between them. Sections are often
associated together by some constraints. For example, sections of the same course
should not overlap. Each such section forms one class which has its own

 - 75 -

preferences. Therefore each section is treated separately - there is a variable for
each section.

An initial sectioning of students into course sections is processed. This
student sectioning is based on Carter's [Car00] homogeneous sectioning and it is
intended to minimize future student conflicts. However, there is still a possibility
of improving the solution with respect to the number of student conflicts. This can
be achieved via section changes during the search.

In the current implementation, sectioning is altered only by switching
student enrolments between two different sections of the same course. Each
student enrolment in a course with more than one section is processed. An
attempt is made to switch it with a student enrolment from a different section. If
this switch decreases the total number of student conflicts, it is applied.

We have compared two possibilities for switching these student
enrolments. The first possibility is during the search, after a course is placed in
the timetable. If a class is part of a course with multiple sections, an attempt is
made to switch students with other sections of the course. Also, when a course has
only one section, the system tries to move some students in multi-section courses
who have a conflict with this class.

The second possibility, which appears to be much faster, but with similar
results, is to switch students only when the best solution is found. In this case, the
students are switched in the current solution, before it is stored as the best
solution. All classes are processed and attempted switches are made between
students in the same course. Note that a switch of a student enrolment can be
followed with subsequent switches, so that classes can be processed more than
once.

Search Algorithm
The quality of a solution is expressed as a weighted sum combining soft

time and classroom preferences, satisfied soft group constraints and the total
number of student conflicts. This allows us to express the importance of different
types of soft constraints. The following weights are considered in the sum:

• Wstudent … weight of a student conflict,
• Wtime … weight of a time preference of a placement,
• Wroom … weight of a classroom preference of a placement,
• Wconstr … weight of a preference of a satisfied soft group constraint,
• Winstrdist … weight of a distance instructor preference of a placement

(as described in chapter 3.3.2, it is discouraged if there are two
subsequent classes taught by the same instructor but placed in different
buildings not farther than 50 meters, strongly discouraged if the
buildings are more than 50 meters but less than 200 meters far)

• Wdeptbal … weight of the overall department balancing penalty (number
of the time units used over initial allowances summed over all times
and departments, see chapter 3.3.2 for details)

 - 76 -

• Wuslhour … weight of a useless half-hour (empty half-hour time
segments between classes, such half-hours cannot be used since all
events require at least one hour)

• Wbigroom … weight of a too large classroom (Wbigroom for each
classroom that has more than 50% excess seats)

Note that preferences of all time, classroom and group soft constraints go
from -2 (strongly preferred) to 2 (strongly discouraged). So, for instance, the
value of the weighted sum is increased when there is a discouraged time or room
selected or a discouraged group constraint satisfied. Therefore, if there are two
solutions, the better solution of them has the lower weighted sum of the above
criteria.

The termination condition stops the search when the solution is complete
and good enough (expressed by the solution quality described above and, in case
of minimal perturbation problem also by the number of allowed perturbations). It
also allows for the solver to be stopped by the user. Characteristics of the current
and the best achieved solution, describing the number of assigned variables, time
and classroom preferences, the total number of student conflicts, etc., are visible
to the user during the search.

The solution comparator prefers a more complete solution (with a smaller
number of unassigned variables). In case of minimal perturbation problem, a
solution with a smaller number of perturbations among solutions with the same
number of unassigned variables is preferred. If both solutions have the same
number of unassigned variables (and perturbations), the solution of better quality
is selected.

If there are one or more variables unassigned, the variable selection
criterion picks one of them randomly. We have tried several approaches using
domain sizes, number of previous assignments, numbers of constraints in which
the variable participates, etc., but there was no significant improvement in this
timetabling problem towards the random selection of an unassigned variable. The
reason is, that it is easy to go back when a wrong variable is picked - such
a variable is unassigned when there is a conflict with it in some of the subsequent
iterations.

When all variables are assigned, an evaluation is made for each variable
according to the above described weights. The variable with the worst evaluation
is selected. This variable promises the best improvement in optimisation.

We have implemented a hierarchical handling of the value selection
criteria. There are three levels of comparison. At each level a weighted sum of the
criteria described below is computed. Only solutions with the smallest sum are
considered in the next level. The weights express how quickly a complete solution
should be found. Only hard constraints are satisfied in the first level sum.
Distance from the initial solution (MPP), and a weighting of major preferences
(including time, classroom requirements and student conflicts), are considered in
the next level. In the third level, other minor criteria are considered. In general,
a criterion can be used in more than one level, e.g., with different weights.

 - 77 -

The above sums order the values lexicographically: the best value having
the smallest first level sum, the smallest second level sum among values with the
smallest first level sum, and the smallest third level sum among these values. As
mentioned above, this allows diversification between the importance of individual
criteria.

Furthermore, the value selection heuristics also support some limits (e.g.,
that all values with a first level sum smaller than a given percentage Pth above the
best value [typically 10%] will go to the second level comparison and so on). This
allows for the continued feasibility of a value near to the best that may yet be
much better in the next level of comparison. If there is more than one solution
after these three levels of comparison, one is selected randomly. This approach
helped us to significantly improve the quality of the resultant solutions.

In general, there can be more than three levels of these weighted sums,
however three of them seem to be sufficient for spreading weights of various
criteria for our problem.

The value selection heuristics also allow for random selection of a value
with a given probability Prw (random walk, e.g., 2%) and, in the case of MPP, to
select the initial value (if it exists) with a given probability Pinit (e.g., 70%).

Criteria used in the value selection heuristics can be divided into two sets.
Criteria in the first set are intended to generate a complete assignment:

• Number of hard conflicts, weighted by Vconf,1 in the first level, Vconf,2
in the second level and Vconf,3 in the third level.

• Number of hard conflicts, weighted by their previous occurrences (see
section 5.1 about conflict-based statistics) and by Vwconf,1..3.

Additional criteria allow better results to be achieved during optimisation:

• Number of student conflicts caused by the value if it is assigned to the
variable, weighted by Vstudent,1..3.

• Soft time conflicts caused by a value if it is assigned to the variable,
weighted by Vtime,1..3.

• Soft classroom conflicts caused by a value if it is assigned to the
variable (combination of the placement's building, room, and
classroom equipment compared with preferences), weighted by
Vroom,1..3.

• Preferences of satisfied soft group constraints caused by the value if it
is assigned to the variable, weighted by Vconstr,1..3.

• Difference in the number of assigned initial values if the value is
assigned to the variable (weighted by V∆init,1..3): -1 if the value is initial,
0 otherwise, increased by the number of initial values assigned to
variables with hard conflicts with the value.

• Distance instructor conflicts caused by a value if it is assigned to the
variable (together with the neighbour classes), weighted by Vinstrdist,1..3.

• Difference in department balancing penalty, weighted Vdeptbal,1..3.

 - 78 -

• Difference in the number of useless half-hours (number of empty half-
hour time segments between classes that arise, minus those which
disappear if the value is selected), weighted Vuslhour,1..3.

• Classroom is too big: 1 if the selected classroom has more than 50%
excess seats, weighted by Vbigroom,1..3.

Let us emphasize that the criteria from the second group are needed for
optimisation only, i.e., they are not needed to find a feasible solution.
Furthermore, assigning a different weight to a particular criteria influences the
value of the corresponding objective function (e.g., see Figure 6.23 with
comparison for optimisation criteria Vstudent,1..3 and Vtime,1..3). The solver returns
good results in reasonable time (e.g., in 30 minutes time limit) when the total sum
of the weights used in additional criteria in the first level corresponds to one half
of the weight Vwconf,1. The weights in the second level usually correspond to the
weights used for the solution quality comparison (Wstudent, Wtime, Wroom, Wconstr ,
Winstrdist, Wdeptbal, Wuslhour and Wbigroom).

Below, we present two types of experiments. The first investigates finding

an initial solution (e.g., when all requirements are placed in the system). This is
followed by experiments on the minimal perturbation problem (e.g., where there
is an existing solution plus a set of changes to be applied to it). Solving an initial
problem can be seen as a special case of MPP where all variables are new and
therefore have no initial values.

If not stated otherwise, the solution quality weights Wstudent, Wtime, Wroom,
Wconstr, Winstrdist, Wdeptbal, Wuslhour and Wbigroom in the solution quality weighted sum
are set to zero in the following experiments. First level weight for the weighted
hard conflicts Vwconf,1 is set to 1, all other weights in the value selection criterion
are set to zero. Also, there is no random value selection (Prw=0) and there is a 10%
threshold limit (Pth=0.1) between levels. This way, by default, only the hard
constraints are considered during the search. We will show how the other weights
influence the search process and the overall solution quality. Also, if not stated
otherwise, distances between buildings are not considered and department
balancing is not used. The results presented in the following chapters were
computed on 1GHz Pentium 3 PC running Windows 2000, with 512 MB RAM
and JDK 1.4.2.

6.3.1. Initial Problem
Figures 6.23 and 6.24 show the computational results for 8 independent

experiments. Time refers to the amount of time required by the solver to find the
presented solution. Satisfied enrolments gives the percentage of satisfied
requirements for courses chosen by students. Preferred time and preferred room
correspond to the satisfaction of time and room preferences respectively. 100%
corresponds to a case when all classes are placed in their most preferred times or
rooms, 0% means a case when the least preferred locations are used. Useless half-
hours gives the percentage of empty half-hour time segments between classes to

 - 79 -

all empty half-hours. Too big rooms gives the usage of classrooms that have more
than 50% excess seats (given percentage of all assigned classes is placed into such
big classrooms). Instructor preferences corresponds to the satisfaction of distance
instructor preferences (100% means that there is no discourage or strongly
discouraged case, 0% means that all two subsequent classes taught by the same
instructor are strongly discouraged because of the distance). And finally, Dept.
balancing penalty presents the overall department balancing penalty. Zero in such
case means that there is no class placed over the initial balancing allowances.
Preferences of soft group constraints are not presented, since there are no such
constraints in the Fall 2004 data set (all group constraints are either required or
prohibited).

Test case No preference Students Time Room

Assigned variables [%] 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
Time [min] 0.16 ± 0.03 8.45 ± 4.40 18.68 ± 6.50 0.17 ± 0.01
Satisfied enrolments [%] 98.26 ± 0.15 99.74 ± 0.02 98.20 ± 0.13 98.18 ± 0.24
Preferred time [%] 62.54 ± 1.19 65.33 ± 1.45 98.75 ± 0.13 62.14 ± 0.94
Preferred room [%] 63.64 ± 2.29 62.60 ± 1.66 62.82 ± 2.07 98.58 ± 0.29
Useless half-hours [%] 1.64 ± 0.23 1.64 ± 0.16 1.42 ± 0.14 1.66 ± 0.19
Too big rooms [%] 27.20 ± 1.06 25.31 ± 0.59 23.77 ± 0.53 26.76 ± 0.96

Fig. 6.23. Solutions of the initial problem (no preferences, students, time or
room optimised)

Test case
Useless

half-hours
Too big
rooms

Distance
instructors

Distance
students

Assigned variables [%] 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
Time [min] 19.14 ± 8.26 0.05 ± 0.01 0.18 ± 0.04 7.72 ± 7.54
Satisfied enrolments [%] 98.04 ± 0.15 98.19 ± 0.08 97.46 ± 0.26 99.53 ± 0.02
Preferred time [%] 60.69 ± 2.75 61.43 ± 0.87 61.80 ± 0.85 66.44 ± 1.89
Preferred room [%] 60.09 ± 1.88 65.69 ± 1.88 64.67 ± 1.96 64.03 ± 0.97
Useless half-hours [%] 0.84 ± 0.15 1.74 ± 0.25 1.55 ± 0.17 1.83 ± 0.14
Too big rooms [%] 25.63 ± 0.69 17.21 ± 0.18 27.77 ± 0.73 24.64 ± 0.47
Instructor preferences [%] - - - - 100.00 ± 0.00 90.34 ± 3.92

Fig. 6.24. Solutions of the initial problem (useless half-hours, too big rooms
or distances either for instructors or students are optimised)

A complete solution was found on every run of all experiments. Average
values together with their RMS (root-mean-square) variances of the best achieved
solutions from 10 different runs found within 30 minute time limit are presented.

The experiment marked No preference presents average solutions obtained
without any preferences on the soft constraints. All solution quality weights W
and value selection weights V are set to zero, except of the weight Vwconf,1=1
(weight of the weighted hard conflicts in the first level of the value selection).

The following five experiments marked Students, Time, Rooms, Useless
half-hours and Too big rooms are minimizing just one of the criteria: the student

 - 80 -

conflicts, violated time preferences, violated room preferences, the number of
empty half-hour segments between classes and the usage of classrooms that have
more than 50% excess seats. Students experiment uses the same weights as No
preference experiment, but student weights are the following: Vstudent,1=0.5,
Vstudent,2=Wstudent=1. Similarly, Time experiment uses weights Vtime,1=0.5,
Vtime,2=Wtime=1, Rooms experiment weights Vroom,1=0.5, Vroom,2=Wroom=1, Useless
half-hours experiment weights Vuslhour,1=0.5, Vuslhour,2=Wuslhour=1 and Too big
rooms experiment weights Vbigroom,1=0.5, Vbigroom,2=Wbigroom=1.

The last two experiments of Figure 6.24 marked Distance instructors and
Distance students are minimizing either overall distance instructor conflicts or
student conflicts. In both cases distances between buildings are considered. Recall
that as for students, if the distance between two following classes is more than
670 meters, the joint enrolments of such classes are considered as student
conflicts (it is not possible for a student to attend both classes, same as when these
classes are overlapping in time). Experiment Distance Students uses the same
weights as the experiment Students, there is around 0.21% of additional student
conflicts caused by the distances of the buildings (note that distances are not
considered in the experiment Student). This represents about 183 student conflicts.
Distance instructors experiment uses the same weights as No preference
experiment, but distance instructor preference weights are the following:
V instrdist,1=0.5, Vinstrdist,2=Winstrdist=1. There is no case of two subsequent classes
taught by the same instructor but placed in two different buildings in this case.

Test case
All, but

no distance,
no dept. bal.

All, but
no distance

All, but
no dept. bal.

All

Assigned variables [%] 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
Time [min] 14.61 ± 4.61 20.36 ± 5.16 13.77 ± 3.89 21.48 ± 4.82
Satisfied enrolments [%] 99.59 ± 0.02 99.52 ± 0.04 99.31 ± 0.03 99.26 ± 0.03
Preferred time [%] 95.04 ± 0.34 92.21 ± 0.39 94.61 ± 0.29 91.85 ± 0.28
Preferred room [%] 74.95 ± 2.43 75.79 ± 2.60 72.80 ± 2.73 72.31 ± 1.90
Useless half-hours [%] 1.40 ± 0.22 1.52 ± 0.19 1.48 ± 0.24 1.47 ± 0.10
Too big rooms [%] 22.43 ± 0.51 22.55 ± 0.78 22.37 ± 0.55 22.59 ± 0.69
Instructor preferences[%] - - - - 95.80 ± 1.32 95.74 ± 2.17
Dept. balancing penalty - - 3.38 ± 1.92 - - 5.00 ± 1.07

Fig. 6.25. Solutions of the initial problem (all preferences constraints
optimised)

Figure 6.25 shows the results from another 4 experiments, now with all
soft constraints enabled. Again, a complete solution was found on every run of all
experiments and average values together with their RMS variances of the best
achieved solutions from 10 different runs found within 30 minute time limit are
presented.

The experiment marked All, but no distance, no dept. bal. combines all the
above weights. Student conflicts and time preferences are weighted equally, room

 - 81 -

preferences are considered much less important. Useless half-hours and too big
rooms are considered as very minor criteria. The weights are as follows:

• Student conflicts: Wstudent=1, Vstudent,1=0.2, Vstudent,2=1
• Time preferences: Wtime=1, Vtime,1=0.2, Vtime,2=1
• Room preferences: Wroom=0.2, Vroom,1=0.0, Vroom,2=0.2
• Useless half-hours: Wuslhour=0.05, Vuslhour,1=0.0, Vuslhour,2=0.05
• Too big rooms: Wbigroom=0.05, Vbigroom,1=0.0, Vbigroom,2=0.05

The All, but no distance experiment comes out of the previous experiment,
but with department balancing enabled. Department balancing weights are
Wdeptbal=0.5, Vdeptbal,1=0.1, Vdeptbal,2=0.5. The initial balancing allowance was
computed from the maximal fill factor as described in chapter 3.3.2 (increased by
20% and rounded upwards). Accomplishment of time preferences is worse than in
the previous experiment, but the departmental balancing is much better and the
resultant solutions are more acceptable from the users point of view. Without
department balancing, the overall balancing penalty is about 300 which is
unacceptable.

The All, but no dept. bal experiment comes also out of the experiment All,
but no distance, no dept. bal., but now the distances between buildings are
considered. Distance instructor preference weights are set as follows:
Winstrdist=1.0, Vinstrdist,1=0.2, Vinstrdist,2=1.0.

The last test from Figure 6.25 (marked All) most closely corresponds to
reality. Here all the soft preferences are considered. Also, both distances between
buildings and departmental balancing features are used. The weights are
combined from the previous tests (same as in All, but no distance, no dept. bal.
experiment, plus department balancing weights as in All, but no distance
experiment and distance instructor preferences as in All, but no dept. bal
experiment). Such solutions were very well accepted by the schedule
representatives at Purdue University.

Test case No CBS

Assigned variables [%] 98.42 ± 0.20
Time [min] 24.08 ± 4.42
Satisfied enrolments [%] 99.52 ± 0.06
Preferred time [%] 94.62 ± 0.43
Preferred room [%] 83.77 ± 1.49
Useless half-hours [%] 1.48 ± 0.27
Too big rooms [%] 22.78 ± 0.57

Fig. 6.26. Solutions of the initial problem (without conflict-based statistics).

Finally, the last experiment (Figure 6.26, marked No CBS) presents
average solutions obtained from the solver without conflict-based statistics. The
weights on soft constraints are the same as in the previous experiment (marked
All, but no distance no dept. bal.). But there is Vconf,1=1 (weight of a hard conflict)

 - 82 -

instead of Vwconf,1=1 (weight of a hard conflict weighted by CBS). Vwconf,1 is set to
zero. The solver was not able to find a complete solution within the given 30
minute time limit, not even when 2% random walk selection was used Prw=0.02 to
avoid cycling. Furthermore, there were at least 5 unassigned classes after 3 hours
of run. On the Purdue Timetabling Problem, conflict-based statistics proved itself
not only as a technique which can improve the solution quality, but as a technique
which can help us to find a complete feasible solution.

IFS MAC was able to assign only about 65% of variables. IFS MAC+
assigned about 94% variables. Consistency was maintained over all hard
constraints. We plan to use MAC+ only over the group constraints, e.g. a
precedence constraint between two or more courses or not-overlap constraint
between a lecture and its seminars. However, the used data set contains only 201
of such constraints, so there is no significant difference between a solution with
and without MAC+ (IFS CBS versus IFS CBS with MAC+ on group constraints).

Figure 6.27 compares several experiments giving different stress on
student conflicts and time preferences. Average values from the best solutions of
10 different runs found within 30 minute time limit are presented.

Only student conflicts or time preferences are considered in the border
experiments marked students and time respectively. In the middle (experiment
marked 1:1), student conflicts and time preferences are equally weighted. The
experiment marked 3:1 prefers student conflicts three times as much as time
preferences (i.e., weights of student conflicts are three times higher than weights
of time preferences) and vice versa. For instance, the experiment marked 1:2 has
the following weights: Vwconf,1=1, Vstudent,1=0.2, Vtime,1=0.4, Vstudent,2=Wstudent=1,
Vtime,2=Wtime=2.

60%

65%

70%

75%

80%

85%

90%

95%

100%

students 3:1 2:1 1:1 1:2 1:3 time

Satisfied st. enrollments Time preferences

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

students 3:1 2:1 1:1 1:2 1:3 time

Satisfied st. enrollments Time preferences

Fig. 6.27. Comparison of satisfied student enrolments and time preferences:
average quality of the solution (left), improvement of the solution in
terms of percentage of the 1:1 solution (right).

Comparison with manual solution
Figure 6.28 presents a comparison of solutions which were generated by

the IFS CBS solver with the manual solution made at Purdue University for the

 - 83 -

semester Fall 2005. As for IFS CBS, a complete solution was found on every run.
Average values together with their RMS (root-mean-square) variances of the best
achieved solutions from 10 different runs found within 30 minute time limit are
presented. The same settings were applied as in the test marked All from Figure
6.28.

Test case IFS CBS Manual
Assigned variables [%] 100.00 ± 0.00 100.00
Time [min] 12.01 ± 3.77 a week
Satisfied enrolments [%] 99.39 ± 0.01 98.20
Preferred time [%] 92.69 ± 0.34 89.02
Preferred room [%] 75.27 ± 1.42 83.04
Useless half-hours [%] 3.46 ± 0.63 4.11
Too big rooms [%] 20.78 ± 0.45 20.92
Instructor preferences [%] 97.29 ± 1.15 94.71
Dept. balancing penalty 7.60 ± 5.02 311

Fig. 6.28. Comparison of a solution generated by IFS CBS and a manually
created solution for Fall 2005.

The solutions generated by IFS CBS are better than the manual solution in
many aspects. Moreover, using different weights for optimisation criteria, it can
be tuned quite well.

6.3.2. Minimal Perturbation Problem
The following experiments were conducted on one of the complete initial

solutions computed in the previous set of experiments (column marked All, but no
dept. bal in Figure 6.28). Input perturbations were generated such that a given
number of randomly selected variables were not allowed to retain the values they
were assigned in the initial solution. Therefore, these classes can not be scheduled
to the same placement as in the initial solution (either room or starting time must
be different). Only variables with more than one value in their domains were used.
For each number of input perturbations, ten different sets of input perturbations
(i.e., variables with initial values prohibited) were generated. The following
figures show the average parameter values of the best solutions found within 10
minutes.

The aim of the first set of experiments is to find a suitable setting for
Pinit (probability of selection of an initial value) and V∆init,1..3 (difference in the
number of assigned initial values). In each experiment, we have executed 10 tests
for each of 10, 20, 30, ... 100 input perturbations respectively (100 runs in total).
The average numbers of assigned variables together with the average numbers of
additional perturbations are presented in Figure 6.29. One or a combination of the
criteria is used in each experiment. The second column refers to the set of criteria
described in Figure 6.30.

 - 84 -

Test case

Pinit ∆init
Assigned

variables [%]
Number of

perturbations
0.5 0 100.00 13.83
0.6 0 99.98 13.48
0.7 0 99.96 13.33
0.8 0 99.95 12.94
0 2 100.00 31.40

0.6 2 99.99 13.26
0 1 100.00 13.70

0.6 1 100.00 11.90
Fig. 6.29. Comparison of several approaches to MPP.

∆init V∆init,i Vstudents,s Vtime,t Vroom,r

0 - 0.25 s=1, 1.0 s=2 0.25 t=1, 1.0 t=2 0.2 r=2

1 0.5 i=1 1.0 s=2 1.0 t=2 0.2 r=2

2 1.0 i=2 0.25 s=1, 1.0 s=3 0.25 t=1, 1.0 t=3 0.2 r=3

Fig. 6.30. Meaning of ∆init

Let us explain the contents of this table. For instance, the expression
0.25s=1, 1.0s=2 in the column marked Vstudents,s means that Vstudents,1 is set to 0.25
and Vstudents,2 is set to 1. The first case (∆init=0) corresponds to the settings of the
All, but no dept. bal experiment. In remaining ∆init sets, we tried to decrease the
importance of other value selection criteria in comparison with the V∆init criterion.
For ∆init=1, the first level value selection criterion V∆init,1 is used and the other
optimisation criteria which were placed in the first level are disabled (Vstudent,1,
Vtime,1 are set to zero). And the third line ∆init=2 corresponds to a case when the
second level value selection criterion V∆init,2 is used and the other optimisation
criteria from the second level (Vstudent,2, Vtime,2, Vroom,2) are moved to the third
level.

Let us discuss particular experiments from Figure 6.29. In the first four
experiments (marked Pinit=0.5, ..., Pinit=0.8), the minimal perturbation problem
was solved only by changing the value selection criteria so that it selected an
initial value with a given probability (50%, 60%, 70% and 80% respectively).
Otherwise, it worked exactly as All, but no dept. bal experiment, since all the
other weights were the same. As the Pinit probability is rising, we can see that the
average number of additional perturbations is descending, but the algorithm is
loosing the ability to find a complete solution in every run (in the given 10 minute
time limit).

Similarly, we can see that using just the second level value selection
criterion V∆init,2 is able to find a complete solution all the time, but the average

 - 85 -

number of additional perturbations is too high. A combination with the 60%
probability of an initial value selection helps to improve the average number of
additional perturbations, but again, there were some cases where a complete
solution was not found.

Using the first level value selection criteria V∆init,1 seems to be very
promising. With this criterion, we were able to find a complete solution to all the
presented experiments. Moreover, the experiment marked Pinit=0.6, ∆init=1
(combining V∆init,1 with 60% initial value selection probability) gave us the best
results from the above experiments, since the average number of additional
perturbations was the lowest. The following results (Figures 6.31 and 6.32) were
computed using the weights from this experiment.

Figure 6.31 presents the average number of additional perturbations
(variables that were not assigned to their initial value though not prohibited).
Additional perturbations are presented wrt. the absolute number of input
perturbation (i.e., up to about 13.4% of input perturbations is considered). The
best solution found within 10 minutes from each experiment is taken into account.
The number of additional perturbations grows with the number of input
perturbations.

0

2

4

6

8

10

12

14

16

0 10 20 30 40 50 60 70 80 90 100
Input perturbations

A
dd

iti
on

al
 p

er
tu

rb
at

io
ns

0%

10%

20%

30%

40%

50%

60%

70%

80%

0 10 20 30 40 50 60 70 80 90 100
Input perturbations

A
dd

iti
on

al
 p

er
tu

rb
at

io
ns

 [%
]

Fig. 6.31. Absolute number of average additional perturbations (left) and
average additional perturbations in terms of percentage of the number
of input perturbations (right).

The graph on Figure 6.32 (left) shows the average quality of the resulting
solutions in the same manner as presented in Figure 6.25. Because the initial
solution is (at least locally) optimal, and because the number of additional
perturbations is the primary minimization criteria, it is not surprising that the
quality of the solution declines with an increasing number of input perturbations.
The weighting between time preferences, student conflicts, and other parameters
considered in the optimisation can have a similar influence as seen in the initial
solutions.

 - 86 -

70%

75%

80%

85%

90%

95%

100%

0 10 20 30 40 50 60 70 80 90 100
Input perturbations

Student conflicts [%] Time preferences [%] Room preferences [%]

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50 60 70 80 90 100
Input perturbations

T
im

e
[s

]

Fig. 6.32. Average solution quality (left), average time (rigt).

Finally, the graph in Figure 6.32 (right) presents the average time needed
to find the best solution. Note that a 10 minutes time limit for finding the best
solution was set. The influence of this limit is seen mostly on the right portion of
the chart, where the number of input perturbations exceeds 50.

Perturbations in practise
In practise, the strategy for computing perturbations needs to be extended.

For example, a change in time is usually much worse than a movement to a
different classroom. The number of enrolled/involved students should also be
taken into account. Another factor is whether the solution has already been
published or not.

The priorities for evaluating perturbations are as follows. Before
publishing timetable:

• minimize number of classes with time changes,
• minimize number of student conflicts,
• optimise satisfaction of problem soft constraints.

After publishing the timetable:

• minimize number of additional (new) student conflicts,
• minimize number of students with time changes,
• minimize number of classes with time changes,
• optimise satisfaction of problem soft constraints.

In both cases, the number of classes with room change is not significant at all.
Before the timetable is published, minimizing the number of classes with time
changes is the most important criteria for the MPP as long as it does not create too
many additional student conflicts in the process. Therefore, as a compromise, the
cost (in equivalent conflicts) of changing the time assigned to a class equals a
number like 5% of the students enrolled in that class. Otherwise none of our other
criteria would have any importance.

 - 87 -

Similar properties apply between other criteria as well. To fulfil all these
needs we have created a function (called perturbations penalty, see Definition
2.19) which can be computed over a partial solution. This is a weighted sum of
various perturbations criteria like the number of classes with time changes or the
number of additional student conflicts. This perturbation penalty is added as an
extra optimisation criterion to the solution comparator and to value selection
criterion, so we can also setup the weights between this perturbation penalty and
other (initial) soft constraints.

6.3.3. Summary
We have proposed and implemented a solution to a large scale university

timetabling problem. Our proposal includes a new iterative forward search
algorithm that is extended by conflict-based statistics which can be generalized to
other search algorithms. Both ideas combined together suffice to solve the
problem and the role of additional heuristics can be minimized. Our problem
solver is able to construct a demand-driven timetable as well as incorporate
dynamic aspects. The initial solution generated by our solver satisfies the course
requests of more than 99% of students together with about 95% of time
requirements. The automated search was able to find suitable times and
classrooms for all classes. The experiments with a MPP give us very promising
results as well. Within 10 minutes, the solver was able to find a complete, high
quality solution with a small number of additional perturbations.

Moreover, the used heuristics can be tuned to maximally fulfil the user
requirements, e.g., when there is a need of a trade-off between several objective
functions. We have demonstrated this, for instance, in the experiment giving
different stress on the satisfied student enrolments and time preferences for
Purdue University timetabling problem (see figure 6.27).

6.4. Summary

In this chapter, we demonstrated several properties of iterative forward
search algorithm on a set of various constraint satisfaction and optimisation
problems. On random binary CSP and RPP, we presented its capabilities of
solving “normal” as well as over-constrained problems in comparison with DBT
and LS algorithms. On the weighted random binary CSP we can clearly see that
the presented conflict-based statistics together with either IFS or LS can perform
very well on optimisation problems. On RPP and Purdue University timetabling
problem we presented the capabilities of IFS to solve minimal perturbation
(optimisation) problems. Finally, on Purdue University timetabling problem we
presented applicability of IFS to a real-life large scale optimisation problem.

We believe that the presented iterative forward search algorithm, together
with the presented extensions (mainly conflict-based statistics), can be used for

 - 88 -

many other real-life constraint satisfaction and optimisation problems. We hope
that the presented properties are valid for such problems as well.

 - 89 -

7. Conclusion

In this thesis, we have presented an iterative forward search algorithm
which is capable of solving various timetabling as well as general constraint
satisfaction and optimisation problems. It is based on local search, but it works
with partial feasible solutions, so it is capable of returning a (partial) solution any
time during the search. This might be a very important feature, especially if the
algorithm is used in an interactive manner. It can start from any (partial) solution
and it can be used for both initial and minimal perturbation problem. We have
also presented various extensions of this algorithm which can improve the quality
of the returned solutions as well as applicability of the algorithm on various
problems.

Also, the presented algorithm works well on the real-life large scale course
timetabling problem at Purdue University. The generated solutions were very well
accepted on Purdue University and they are going to use this solver in practice as
of semester Spring 2006. Moreover, we are going to extend this solver to be used
not only for the generation of the central timetable but also for all the
departmental timetabling problems. These problems are of different structure and
also there are some other constraints which need to be implemented.

The major contributions of this work are: We have defined a minimal

perturbation (optimisation) problem. This definition is applicable on various
dynamic problems where the task is to find a solution of a modified problem that
is as near as possible to the solution of the original problem. Next, we have
developed the iterative forward search algorithm which is capable as we believe
of solving various constraint satisfaction and optimisation problems as well as
minimal perturbation (optimisation) problems. We have also presented the
conflict-based statistics which can be used in the framework of IFS or a local
search algorithm and we have shown that it could dramatically improve the results
especially when solving optimisation problems. Finally, we were able to solve
Purdue university large lecture room timetabling problem and we are going to
continue using the presented approaches for the departmental problems as well.
Also, we have published four data sets (from four different semesters, also present
on the attached CD-ROM) of Purdue timetabling problem in a clear, anonymous
form which can be used as an interesting timetabling benchmark.

 - 90 -

8. Bibliography

AM99 S. Abdennadher and M. Marte. University timetabling using
constraint handling rules. Journal of Applied Artificial
Intelligence, Special Issue on Constraint Handling Rules, 1999.

Bar00 R. Barták. Dynamic Constraint Models for Planning and
Scheduling Problems. In New Trends in Constraints, LNAI
1865, pp. 237-255, Springer, 2000.

Bes91 Christian Bessière. Arc-consistency in dynamic constraint
satisfaction problems. In AAAI-91, pages 221-226, Anaheim
CA, 1991

Bes94 C. Bessiére. Arc-consistency and arc-consistency again.
Artificial Intelligence, 65(1):179–190, 1994.

Bes96 Christian Bessière. Random uniform csp generators, 1996.
http://www.lirmm.fr/~bessiere/generator.html.

BF99 C. Bessiére and E. C. Freuder. Using constraint metaknowledge
to reduce arc consistency computation. Artificial Intelligence,
107(1):125–148, 1999.

BKJW97 E. Burke, J. Kingston, K. Jackson, R. Weare. Automated
University Timetabling: The State of the Art. The Computer
Journal 40 (9) 565-571, 1997.

BMR03 Roman Barták, Tomáš Müller, and Hana Rudová. Minimal
Perturbation Problem – A Formal View. Neural Network
World (2003), vol. 13, no. 5, p. 501-511.

BMR04 Roman Barták, Tomáš Müller, and Hana Rudová. A new
approach to modelling and solving minimal perturbation
problems. In Recent Advances in Constraints, pages 233–249.
Springer Verlag LNAI 3010, 2004.

BPS99 S. C. Brailsford, C. N. Potts, B. M. Smith. Constraint
Satisfaction Problems: Algorithms and Applications. European
Journal of Operational Research 119 557-581, 1999.

 - 91 -

BR97 C. Bessière and J. C. Régin. Arc consistency for general
constraint networks: Preliminary results. In Proceedings of
15th International Joint Conference on Artificial Intelligence
(IJCAI-97), pages 398–404, Nagoya, Japan, 1997.

BR01 C. Bessière and J. C. Régin. Refining the basic constraint
propagation algorithm. In Proceedings IJCAI’01, pages 309–
315, Seattle WA, 2001.

Car86 M. W. Carter. A Survey of Practical Applications of
Examination Timetabling Algorithms. Operations Research 34
193-202, 1986.

Car00 Michael W. Carter. A comprihensive course timetabling and
student scheduling system at the University of Waterloo. In
Edmund Burke and Wilhelm Erben, editors, PATAT 2000 -
Proceedings of the 3rd international conference on the Practice
And Theory of Automated Timetabling, pages 64–82, 2000.

CDJD04 Hadrien Cambazard, Fabien Demazeau, Narendra Jussien, and
Philippe David. Interactively solving school timetabling
problems using extensions of constraint programming. In
Edmund K. Burke and Michael Trick, editors, PATAT 2004 -
Proceedings of the 5th International Conference on the Practice
and Theory of Automated Timetabling, pages 107–124, 2004.

CK96 T. B. Cooper and J.H. Kingston. The Complexity of Timetable
Construction Problems. In the Practice and Theory of
Automated Timetabling, ed. E.K. Burke and P. Ross, pp. 283-
295, Springer-Verlag, 1996.

COC97 Mats Carlsson, Greger Ottosson, and Bjorn Carlson, An open-
ended finite domain constraint solver, In Programming
Languages: Implementations, Logics, and Programming.
Springer-Verlag LNCS 1292, 1997.

Cra96 J. M. Crawford. An approach to resource constrained project
scheduling. In Artificial Intelligence and Manufacturing
Research Workshop, 1996.

Deb96 R. Debruyne. Arc-consistency in dynamic CSPs is no more
prohibitive. In Proceedings of 8th Conference on Tools with
Artificial Intelligence (TAI’96), pages 299–306, 1996.

Dech03 Rina Dechter. Constraint Processing. Morgan Kaufmann
Publishers, 2003.

 - 92 -

DF02 Rina Dechter and Daniel Frost. Backjump-based backtracking
for constraint satisfaction problems. Artificial Intelligence,
136(2):147–188, 2002.

EGJ03 Abdallah Elkhyari, Christelle Guéret, and Narendra Jussien.
Solving dynamic timetabling problems as dynamic resource
constrained project scheduling problems using new constraint
programming tools. In Edmund Burke and Patrick De
Causmaecker, editors, Practice And Theory of Automated
Timetabling, pages 39–59. Springer-Verlag LNCS 2740, 2003.

FW92 Freuder, E.C., Wallace R.J., Partial Constraint Satisfaction,
Artificial Intelligence, 58:21-70, 1992.

GH97 Philippe Galinier and Jin-Kao Hao. Tabu search for maximal
constraint satisfaction problems. In Proceedings 3rd
International Conference on Principles and Practice of
Constraint Programming, pages 196–208. Springer-Verlag
LNCS 1330, 1997.

Gin93 Matthew L. Ginsberg. Dynamic backtracking. Journal of
Artificial Intelligence Research, pages 23–46, 1993.

HG95 William D. Harvey and Matthew L. Ginsberg. Limited
discrepancy search. In Chris S. Mellish, editor, Proceedings of
the Fourteenth International Joint Conference on Artificial
Intelligence, pages 607–615. Morgan Kaufmann, 1995.

Ian04 Ian Miguel. Dynamic Flexible Constraint Satisfaction and its
Application to AI Planning. Springer, 2004.

JDB00 Narendra Jussien, Romuald Debruyne, and Patrice Boizumault.
Maintaining arcconsistency within dynamic backtracking. In
Principles and Practice of Constraint Programming, pages 249-
261, 2000.

JL02 Narendra Jussien and Olivier Lhomme. Local search with
constraint propagation and conflict-based heuristics. Artificial
Intelligence, 139(1):21–45, 2002.

Jus03 Narendra Jussien. The versatility of using explanations within
constraint programming. In Habilitation thesis of Universit de
Nantes, France, 2003.

KGV83 S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimisation by
simulated annealing. Science, Number 4598, 13 May 1983,
220, 4598:671–680, 1983

 - 93 -

Koc02 Waldemar Kocjan. Dynamic scheduling: State of the art report.
Technical Report T2002:28, SICS, 2002.

Mac77 A. K. Mackworth. Consistency in Networks of Relations.
Artificial Intelligence, 8:99–118, 1977.

MB01 T. Müller and R. Barták. Interactive Timetabling. In
Proceedings of the ERCIM Workshop on Constraints, Prague,
June 2001

MB02 Tomáš Müller and Roman Barták. Interactive Timetabling:
Concepts, Techniques, and Practical Results. In Burke,
Edmund; Causmaecker, Patrick De (eds.): Proceedings of the
4th International Conference on the Practice and Theory of
Automated Timetabling (PATAT2002), Gent, 2002, pp. 58-72.

MBR04 T. Müller, R. Barták, H. Rudová. Iterative Forward Search:
Combining Local Search with Maintaining Arc Consistency
and a Conflict-based Statistics. In LSCS'04 - International
Workshop on Local Search Techniques in Constraint
Satisfaction, 2004.

MF00 Zbigniew Michalewicz and David B. Fogel. How to Solve It:
Modern Heuristics. Springer, 2000.

MH86 R. Mohr and T. C. Henderson. Arc and path consistency
revisited. Artificial Intelligence, 28(2):225–233, 1986.

MJP92 Steven Minton, Mark D. Johnston, Andrew B. Philips, and
Philip Laird. Minimizing conflicts: a heuristic repair method
for constraint satisfaction and scheduling problems. Artificial
Intelligence, 58:161–205, 1992.

MPSW98 Ewan MaxIntyre, Patrick Prosser, Barbara Smith, and Toby
Walsh. Random Constraint Satisfaction: theory meets practice.
In Michael Maher and Jean-Francois Puget (eds.): Principles
and Practice of Constraint Programming - CP98. Springer-
Verlag LNCS 1520, pp. 325-339, 1998.

MR04 Tomáš Müller and Hana Rudová. Minimal Perturbation
Problem in Course Timetabling. In PATAT 2004 - Proceedings
of the 5th international conference on the Practice And Theory
of Automated Timetabling, pages 283-303, 2004.

 - 94 -

MRB05 T. Müller, H. Rudová, R. Barták Minimal Perturbation
Problem in Course Timetabling. Practice And Theory of
Automated Timetabling, Selected Revised Papers, 2005. To
appear.

Mul01 T. Müller. Interactive Timetabling, Master Thesis, KTIML
MFF UK, Prague, September 2001

Mul02 T. Müller. Interactive Heuristic Search Algorithm. In
Proceedings of the CP'02 Conference - Doctoral Programme,
Ithaca, September 2002. Springer-Verlag LNCS 2470, pp. 765,
2002.

NB94 B. Neveu and P. Berlandier. Maintaining arc consistency
through constraint retraction. In Proceedings of the IEEE
International Conference on Tools for Artiocial Intelligence
(TAI), pages 426–431, New Orleans, LA, 1994.

PG96 G. Pesant, M. Gendreau, A view of local search in constraint
programming, In Proceedings of Principles and Practice of
Constraint Programming, Springer, Berlin, 1996, pp. 353–366.

PMM04 Sylvain Piechowiak, Jingxua Ma, and René Mandiau. EDT-
2004: An open interactive timetabling tool. In Edmund K.
Burke and Michael Trick, editors, PATAT 2004 - Proceedings
of the 5th International Conference on the Practice and Theory
of Automated Timetabling, pages 305–321, 2004.

Pre00 S. D. Prestwich. A Hybrid Search Architecture Applied to Hard
Random 3-SAT and Low-Autocorrelation Binary Sequences.
Sixth International Conference on Principles and Practice of
Constraint Programming, Lecture Notes in Computer Science
vol. 1894, Springer-Verlag, 2000, pp. 337-352.

Pre04 S. D. Prestwich. Exploiting Relaxation in Local Search. In First
International Workshop on Local Search Techniques in
Constraint Satisfaction, pages 49-61, 2004

RM03 Hana Rudová and Keith Murray. University course timetabling
with soft constraints. In Edmund Burke and Patrick De
Causmaecker, editors, Practice And Theory of Automated
Timetabling, Selected Revised Papers, pages 310–328.
Springer-Verlag LNCS 2740, 2003.

 - 95 -

RR98 E.T. Richards, B. Richards, Non-systematic search and
learning: An empirical study, In Proceedings of Conference on
Principles and Practice of Constraint Programming, Pisa, 1998,
pp. 370–384.

RRH02 Yongping Ran, Nico Roos, and Jaap van den Herik.
Approaches to find a nearminimal change solution for dynamic
CSPs. In Fourth International Workshop on Integration of AI
and OR techniques in Constraint Programming for
Combinatorial Optimisation Problems, pages 373–387, 2002.

Sch97 Andrea Schaerf. Combining local search and look-ahead for
scheduling and constraint satisfaction problems. In
Proceedings of 15th International Joint Conference on Artificial
Intelligence (IJCAI-97), pages 1254–1259, Nagoya, Japan,
1997.

Sch99 A. Schaerf. A survey of automated timetabling. Articifial
Intelligence Review 13(2), pages 87-127, 1999

SW00 Hani El Sakkout, Mark Wallace. Probe backtrack search for
minimal perturbation in dynamic scheduling. CONSTRAINTS,
4(5):359–388, 2000.

Tri92 A. Tripathy. Computerised decision aid for timetabling – A
case analysis. Discrete applied mathematics, 35 (3), pp. 313-
323, 1992

Tsa93 E. Tsang. Foundations of Constraint Satisfaction. Academic
Press, 1993.

Ver03 Kamil Veřmiřovský. Algorithms for Constraint Satisfaction
Problems. Master Thessis, Masaryk University, Brno 2003

VJ03 Gérard Verfaillie and Narendra Jussien. Dynamic constraint
solving, 2003. A tutorial including commented bibliography
presented at CP 2003.
See http://www.emn.fr/x-info/jussien/CP03tutorial/.

VR02 Kamil Veřmiřovský and Hana Rudová, Limited Assignment
Number Search Algorithm. In Maria Bielikova (ed.): SOFSEM
2002 Student Research Forum, 2002, pp. 53-58.

Wal94 M. Wallace. Applying constraints for scheduling. In Constraint
Programming, volume 131 of NATO ASI Series Advanced
Science Institute Series, Springer, 1994.

 - 96 -

WC97 G. M. White, P. W. Chan. Towards the Construction of
Optimal Examination Timetables. INFOR 17 219-229, 1979.

Wer85 D. Werra. An Introduction to Timetabling. European Journal of
Operation Research 19 (1985), 151-162.

Whi00 G. M. White. Constrained Satisfaction, Not So Constrained
Satisfaction and the Timetabling Problem. A Plenary Talk in
the Proceedings of the 3rd Int. Conf. on the Practice and
Theory of Automated Timetabling, pp. 32-47, 2000.

Wren96 A. Wren. Scheduling, Timetabling and Rostering – A Special
Relationship? In the Practice and Theory of Automated
Timetabling, ed. E.K. Burke and P. Ross, pp. 46-75, Springer-
Verlag, 1996.

ZY01 Y. Zhang and R. Yap. Making AC-3 an Optimal Algorithm. In
Proceedings of IJCAI-01, 316-321, (2001).

 - 97 -

Appendix A IFS Framework

The iterative forward search algorithm was implemented in Java. The
implementation is very general and it can be easily reused for modelling and
solving various problems. In this chapter, some implementation aspects of the
iterative forward search framework are discussed. For more details, consult the
implementation or API (JavaDoc) documentation on the attached CD-ROM.

The general implementation works with abstract classes describing
variables, values and constraints. There is a class describing model, which is
basically a container of available variables and constraints and a class describing
solution which has the ability to store the best ever found solution. Next, there are
some interfaces and general implementation of necessary heuristics, namely
variable, value selections, a solution comparator and a termination condition.
Finally, there is a solver which together with the given heuristics implements the
iterative forward search algorithm.

Moreover, there is a set of listeners which can be registered on various
levels (on a constraint, a variable, a model, a solver or a solution) and a plug-in
mechanism for solver extensions. Using these hooks, various extensions (as for
instance the conflict-based statistics or MAC) can be implemented.

A.1 Solver

As described in the chapter 4, the solver repeatedly selects a variable, a
value, assigns the value to the variable and checks whether the solution is the best
ever found until a termination condition succeeds. The implementation is in class
Solver which can be found in the package ifs.solver. Following Figure 4.1
presents its core functionality.

class Solver {
 //termination condition
 TerminationCondition iTerminationCondition;
 //variable selection
 VariableSelection iVariableSelection;
 //value selection
 ValueSelection iValueSelection;
 //solution comparator
 SolutionComparator iSolutionComparator;

(continues on the next page)

 - 98 -

 Solution solve(Model model) {

 Solution solution = model.createInitialSolution ();

 //while not terminated
 while (iTerminationCondition. canContinue (solution)) {

 //select variable
 Variable variable =
 iVariableSelection. selectVariable (solution);

 //select value
 Value value =
 iValueSelection .selectValue (solution, variable);

 //(un)assign the selected value to the selected var iable
 if (value!= null)
 variable. assign (value);
 else
 variable. unassign ();

 // if the solution is the best ever found then memo rize it
 if (iSolutionComparator. isBetterThanBest (solution))
 solution. saveBest ();

 } //end while

 //restore the best ever found solution
 solution. restoreBest ();

 return solution;
 }
}

Fig. A.1. Core of the IFS solver (class ifs.solver.Solver)

Solution class contains some information about the solution and the
functions for storing and restoring the best ever found solution.

class Solution {
 public long getIteration(); //current iteration
 public double getTime(); //current solution time
 public Model getModel(); //model

 //store and restore the best solution
 public void saveBest() { getModel().saveBest(); }
 public void restoreBest() { getModel().restoreBest(); }
}

Fig. A.2. Core of the solution (class ifs.solver.Solution)

 - 99 -

A.2 Model

The model, which is implemented by class Model (package ifs.model)
contains all the variables and constraints in the problem. Moreover, it contains
some useful functions which can be used for instance by the heuristics. The most
interesting is the function conflictValues which returns all the values which are
assigned and which are in a hard conflict with the given value. This means the
values which have to be unassigned if the given value is selected for the
assignment.

class Model {
 //variables
 public Vector variables();
 public void addVariable(Variable variable);
 public void removeVariable(Variable variable);

 //constraints
 public Vector constraints();
 public void addConstraint(Constraint constraint);
 public void removeConstraint(Constraint constraint);

 public Set conflictValues(Value value) {
 HashSet conflictValues = new HashSet();
 for (Enumeration e =value.variable().constraints().elements();
 e.hasMoreElements();) {
 Constraint c = (Constraint)e.nextElemen t();
 c.computeConflicts(value, conflictValue s);
 }
 return conflictValues;
 }
 void saveBest() {
 for (Iterator i = iVariables.iterator(); i.hasNext();) {
 Variable variable = (Variable)i.next();
 variable.iBestAssignment = variable.iAssignme nt;
 }
 }

 void restoreBest() {
 for (Iterator i = iVariables.iterator(); i.hasNext();) {
 Variable variable = (Variable)i.next();
 variable.iAssignment = variable.iBestAssignme nt;
 }
 }

 ...
}

Fig. A.3. Core of the model (class ifs.model.Model)

 - 100 -

A.2.1 Variables
The Variable class (package ifs.model) is an abstract implementation of a

variable. Every variable can contain an assigned value, the initial assignment (in
case of minimal perturbation problem) and the best ever found assignment. Also,
it keeps track of the constraints in which the variable participates. The most
interesting functions are assign and unassign which assign and unassign a value to
the variable.

class Variable {
 Value iAssignment = null; //assigned value
 Value iInitialAssignment = null; //initial value (MPP)
 Value iBestAssignment = null; //best assignment value
 Collection iConstraints; //constraints which contain this variable

 Collection getValues () {
 //to be implemented: variable’s domain
 }

 void unassign () {
 Value oldValue = iAssignment;
 iAssignment = null;
 for (Iterator i = iConstraints.iterator(); i.hasNext() ;) {
 Constraint constraint = (Constraint)i.next();
 constraint. unassigned (this, oldValue);
 }
 }

 void assign(Value value) {
 if (iAssignment != null) unassign ();
 iAssignment = value;
 for (Iterator i = iConstraints.iterator(); i.hasNext() ;) {
 Constraint constraint = (Constraint)i.next();
 constraint. assigned (this, oldValue);
 }
 }
}

Fig. A.4. Core of a variable (class ifs.model.Variable)

A.2.2 Values
There is also an abstract class which implements a single value, class

Value (package ifs.model). The most interesting property is that each value knows
about the variable to which it belongs. Also, there is a method which compares
two values. For general implementation of optimisation heuristics, every value
can be converted to integer (function toInt). Of course, there can be made more
dedicated, problem dependent heuristics which take into account a possible
complexity of the value, if needed.

 - 101 -

class Value {
 public Variable variable();
 public void setVariable(Variable variable);

 public void assigned(long iteration);
 public void unassigned(long iteration);

 public boolean valueEquals(Value value);
 public int toInt();
}

Fig. A.5. Core of a value (class ifs.model.Value)

A.2.3 Constraints
As indicated in chapter 4, the most important function of every constraint

is the computation of the conflicts which will the selected value cause if assigned
(method computeConflicts). Also, it is up to a constraint to unassign the
conflicting variables caused by the constraint when there is a value assigned to a
variable (method assigned). It also keeps track of what variables are involved in
the constraint.

class Constraint {
 public Vector variables();

 void computeConflicts(Value value, Set conflicts) {
 //this method needs to be implemented by all co nstraints!
 }

 void unassigned(Value value) {}

 void assigned(Value value) {
 Set conflicts = new HashSet();
 computeConflicts(value, conflicts);
 for (Iterator i = conflicts.iterator(); i.hasNe xt();) {
 Value conflictingValue = (Value)i.next();
 conflictingValue.variable().unassign();
 }
 }
}

Fig. A.6. Core of a constraint (class ifs.model.Constraint)

A.3 Heuristics

There are four interfaces (Figures A.7. – A.10.) for implementing the
heuristics which guides the IFS solver. Namely, there is the variable selection

 - 102 -

heuristics, the value selection heuristics, the solution comparator and the
termination condition.

public interface VariableSelection {
 public Variable selectVariable(Solution solution);
}

Fig. A.7. Variable selection (class ifs.heuristics.VariableSelection)

public interface ValueSelection {
 public Value selectValue(Solution solution,
 Variable selectedVariable);
}

Fig. A.8. Value selection (class ifs.heuristics.ValueSelection)

public interface SolutionComparator {
 public boolean isBetterThanBestSolution(Solution currentSolution) ;
}

Fig. A.9. Solution comparator (class ifs.solution.SolutionComparator)

public interface TerminationCondition {
 public boolean canContinue(Solution currentSolution);
}

Fig. A.10. Termination condition(ifs.termination.TerminationCondition)

In the following sections the general implementations of the above
heuristics are discussed.

A.3.1 Variable Selection
The very basic (but sufficient for all the experiments) implementation of

the variable selection criterion picks an unassigned variable randomly. If there is
no unassigned variable, one of the assigned ones is selected.

 - 103 -

public class GeneralVariableSelection implements VariableSelection {

 public Variable selectVariable(Solution solution) {
 if (!solution.getModel().unassignedVariables().isEmpt y()) {
 return (Variable)ToolBox.random(
 solution.getModel().unassigne dVariables());
 } else {
 return (Variable)ToolBox.random(
 solution.getModel().assignedV ariables());
 }
}

Fig. A.11. General implementation of the variable selection criterion
(class ifs.heuristics.GeneralVariableSelection)

A.3.2 Solution Comparator
Current solution is better than the best ever found solution if there is no

best solution yet saved or if it has lower number of unassigned variables. If the
current solution has the same number of assigned variables as the best ever found
solution, the better solution has the lowest sum of the assigned values (method
model.getTotalValue sums value.toInt() over all assigned values). There is also a
general solution comparator which takes the number of perturbations into account
for the minimal perturbation problem (ifs.solution.MPPSolutionComparator).

public class GeneralSolutionComparator
 implements SolutionComparator {

 public boolean isBetterThanBestSolution(Solution solution) {
 if (solution.getBestInfo()== null) {
 //there is no best solution yet saved
 return true;
 }
 int currentUnassigned =
 solution.getModel().unassignedVariab les().size();
 int bestUnassigned =
 solution.getModel().getBestUnassigne dVariables();
 if (bestUnassigned != currentUnassigned) {
 return bestUnassigned > unassigned;
 }

 int curentValue = solution.getModel().getTotalValue();
 int bestValue = solution.getBestValue();
 return currentValue < bestValue;
 }
}

Fig. A.12. General implementation of the solution comparator (class
ifs.solution.GeneralSolutionComparator)

 - 104 -

A.3.3 Termination Condition
The solver should stop when there is a complete solution found (e.g., if

there is no optimisation involved) or when the given number of iterations or
timeout is reached. There is also a general implementation which takes into
account the minimal number of perturbations in case of solving the minimal
perturbation problem (class ifs.termination.MPPTerminationCondition).

public class GeneralTerminationCondition
 implements TerminationCondition {
 private int iMaxIter;
 private double iTimeOut;
 private boolean iStopWhenComplete;

 public boolean canContinue(Solution currentSolution) {
 if (iMaxIter>=0 && currentSolution.getIteration()>=iM axIter) {
 //Maximum number of iteration reached.
 return false;
 }

 if (iTimeOut>=0 && currentSolution.getTime()>iTimeOut) {
 // Timeout reached.
 return false;
 }

 if (iStopWhenComplete) {
 boolean ret = (!currentSolution.getModel().
 unassignedVariables().isE mpty());
 //Complete solution found.
 return ret;
 }

 return true;
 }
}

Fig. A.13. General implementation of the termination condition (class
ifs.termination.GeneralTerminationCondition)

A.3.4 Value Selection
General implementation of value selection criterion is quite complicated. It

covers several basic heuristics (random-walk, CBS, tabu-search, MAC). Also it
works for the initial as well as minimal perturbation problem.

 - 105 -

public class GeneralValueSelection implements ValueSelection {
 //random walk selection
 double iRandomWalkProb = 0.0;

 //weight of a conflict
 double iWeightCoflicts = 1.0;
 //weight of a value (value.toInt())
 double iWeightValue = 0.0;

 //TABU-SEARCH: size of tabu-list
 int iTabuSize = 0;
 //TABU-SEARCH: tabu-list
 ArrayList iTabu = null;
 //TABU-SEARCH: pointer to the last value in the t abu-list
 int iTabuPos = 0;

 //Minimal perturbations problem
 boolean iMPP = false;
 //MPP: initial selection probability
 double iInitialSelectionProb = 0.0;
 //MPP: limit on the number of perturbations
 int iMPPLimit = -1;
 //MPP: weight of the difference in initial assignme nts
 double iWeightDeltaInitialAssignment = 0.0;

 //Conflict based statistics (null if not present)
 ConflictStatistics iStat = null;
 //CBS: CBS weighted conflict weight
 double iWeightWeightedCoflicts = 0.0;

 //MAC: null if there is no arc-consistency
 MacPropagation iProp = null;
 //MAC: allow selection of removed values (MAC+)
 boolean iAllowNoGood = false;

 public Value selectValue(Solution solution,
 Variable selectedVariable) {

 if (iMPP && selectedVariable.getInitialAssignment() != null) {
 //Minimal perturbations problem
 if (solution.getModel().unassignedVariables().isEmpty()) {
 //complete solution – decrease MPP limit if used
 if (solution.getModel().perturbVariables().size() <=
 iMPPLimit) {
 iMPPLimit =
 solution.getModel().perturbVariables() .size() - 1;
 }
 }
 if (iMPPLimit >= 0 &&
 solution.getModel().perturbVariables().size () > iMPPLimit) {
 //MPP limit reached – initial value has to be assigned
 return selectedVariable.getInitialAssignment();
 }
 if (ToolBox.random() <= iInitialSelectionProb) {
 //with the given probability, initial value is selected
 return selectedVariable.getInitialAssignment();
 }
 } //MPP

(continues on the next page)

 - 106 -

 Vector values = selectedVariable.values();

 if (ToolBox.random() <= iRandomWalkProb) {
 //random-walk
 return (Value)ToolBox.random(values);
 }

 if (iProp != null) {
 //MAC: select one of the not-removed values (usually always)
 Collection goodValues = iProp.goodValues(selectedVa riable);
 if (!goodValues.isEmpty())
 values = new Vector(goodValues);
 } else if (!iAllowNoGood) {
 //all values are removed and the selection of
 //not-removed values is prohibited
 return null;
 }
 }

 //values with the lowest weighted sum
 Vector bestValues = null;
 double bestWeightedSum = 0;

 //go through all the values
 for (Enumeration i1 = values.elements();i1.hasMoreElem ents();) {
 Value value = (Value)i1.nextElement();
 if (iTabu != null && iTabu.contains(value)) {
 //value is in the tabu-list
 continue;
 }

 if (value.equals(selectedVariable.getAssignment())) {
 //do not pick the same value as it is curre ntly assigned
 //if there is a value assigned to the selec ted variable
 continue;
 }

 //conflicting values
 Collection conf = solution.getModel().conflic tValues(value);

 double weightedConflicts = 0.0; //CBS weighted conflicts
 if (iStat != null) {
 weightedConflicts = iStat.countRemovals(
 solution.getIteration(), conf, value));
 }

 //MPP: difference in initial assignments
 long deltaInitialAssignments = 0;
 if (iMPP) {
 //go through all conflicts
 for (Iterator it1 = conf.iterator(); it1.hasNext();) {
 Value aValue = (Value)it1.next();
 if (aValue.variable().getInitialAssignment() != null) {
 //not assigned to an initial value -> g ood to unassign
 deltaInitialAssignments--;
 }
 }

(continues on the next page)

 - 107 -

 if (value.equals(selectedVariable.getInitialAssignmen t()) {
 //value is different from initial value - > bad to assign
 deltaInitialAssignments++;
 }
 if (iMPPLimit >= 0 &&
 (solution.getModel().perturbVariables().size()
 + deltaInitialAssignments) > iMPPLi mit) {
 //assignment exceeds MPP limit
 continue;
 }
 }

 //weighted sum of several criteria
 double weightedSum =
 (iWeightDeltaInitialAssignment * deltaIniti alAssignments)
 + (iWeightWeightedCoflicts * weightedConflict s)
 + (iWeightCoflicts * conf.size())
 + (iWeightValue * value.toInt());

 //store best values
 if (bestValues == null || bestWeightedSum > weightedSum) {
 bestWeightedSum = weightedSum;
 if (bestValues == null)
 bestValues = new Vector();
 else
 bestValues.clear();
 bestValues.add(value);
 } else if (bestWeightedSum == weightedSum) {
 bestValues.add(value);
 }
 } // end of the for cycle over all values

 Value selectedValue = (Value)ToolBox.random(bes tValues);
 if (selectedValue == null) {
 //no value in the bestValues -> select random ly
 selectedValue = (Value)ToolBox.random(values);
 }

 //In case of tabu-search, put into tabu-list
 if (iTabu != null) {
 if (iTabu.size() == iTabuPos)
 iTabu.add(selectedValue);
 else
 iTabu.set(iTabuPos, selectedValue);
 iTabuPos = (iTabuPos + 1) % iTabuSize;
 }

 return selectedValue;
 }
}

Fig. A.14. General implementation of the value selection criterion
(class ifs.heuristics.GeneralValueSelection)

 - 108 -

Appendix B Examples

In this chapter, an implementation of Random Binary CSP using IFS
framework is presented. For more details or other problems discussed in chapter
6, consult the implementation or API (JavaDoc) documentation on the attached
CD-ROM. There are the following packages: ifs.example.csp (Random Binary
CSP), ifs.example.rpp (Random Placement Problem) or ttsolver (Purdue
University Timetabling Problem).

B.1 Random Binary CSP

First of all, we need to define a variable and a value. The only thing which
needs to be implemented is the domain of a variable (see computeValues method
in the Figure B.1.). Note that the following example is complete and it was not
simplified, there is nothing more to be written to be able to execute IFS on
random binary CSPs.

public class CSPVariable extends ifs.model.Variable {
 public CSPVariable(int domainSize) {
 super(null); //no intial value
 setValues(computeValues(domainSize));
 }
 public Vector computeValues(int domainSize) {
 Vector values = new Vector();
 for (int i=0; i<domainSize; i++)
 values.add(new CSPValue(this,i));
 return values;
 }
}

Fig. B.1. Definition of CSP variable (ifs.example.csp.CSPVariable)

public class CSPValue extends ifs.model.Value {
 public CSPValue(Variable variable, int value) {
 super(variable, value);
 }
}

Fig. B.2. Definition of CSP value (ifs.example.csp.CSPValue)

 - 109 -

Next, we need to define binary constraints between CSP variables. Array
iIsConsistent is used for memorizing what pairs of values are compatible, the
method init generates these compatible pairs. The method isConsistent checks the
consistency of a pair of given values (note that it needs to take the values in the
correct order). Method computeConflicts checks whether the other assigned
variable (diferent from the one which is going to be assigned) has a value
compatible with the selected value.

public class CSPBinaryConstraint extends ifs.model.BinaryConstraint{
 boolean iIsConsistent[][] = null;
 int iNrCompatiblePairs;

 public CSPBinaryConstraint(int nrCompatiblePairs) {
 iNrCompatiblePairs = nrCompatiblePairs;
 }

 void swap(int[][] allPairs, int first, int second) {
 int[] a = allPairs[first];
 allPairs[first] = allPairs[second];
 allPairs[second] = a;
 }

 public void init(Random rndNumGen) {
 int numberOfAllPairs =
 first().values().size() * second().values().s ize();
 int[][] allPairs = new int[numberOfAllPairs][];
 int idx = 0;

 iIsConsistent =
 new boolean[first().values().size()][second().values().size()] ;

 for (Enumeration i1=first().values().elements();
 i1.hasMoreElements();) {
 CSPValue v1 = (CSPValue)i1.nextElement();
 for (Enumeration i2=second().values().elements();
 i2.hasMoreElements();) {
 CSPValue v2 = (CSPValue)i2.nextElement();
 iIsConsistent[v1.toInt()][v2.toInt()] = false;
 allPairs[idx++] = new int[] {v1.toInt(), v2.toInt()};
 }
 }

 for (int i=0; i<iNrCompatiblePairs; i++) {
 swap(allPairs, i,
 i+(int)(rndNumGen.nextDouble()*(numberOfAllPairs-i)));
 iIsConsistent[allPairs[i][0]][allPairs[i][1]] = true;
 }
 }

(continues on the next page)

 - 110 -

 public boolean isConsistent(Value value1, Value value2) {
 if (value1== null || value2== null) return true;
 if (isFirst(value1.variable())) {
 return iIsConsistent[value1.toInt()][value2.toInt()];
 } else {
 return iIsConsistent[value2.toInt()][value1.toInt()];
 }
 }

 public void computeConflicts(Value selectedValue, Set conflict s) {
 if (isFirst(selectedValue.variable())) {
 if (!isConsistent(selectedValue, second().getAssignme nt()))
 conflicts.add(second().getAssignment());
 } else {
 if (!isConsistent(selectedValue, first().getAssignmen t()))
 conflicts.add(first().getAssignment());
 }
 }
}

Fig. B.3. Definition of CSP constrain (ifs.example.csp.CSPBinaryConstraint)

Next, we need to implement the model (see Figure B.4.). The binary CSP
is generated according to the given parameters. First of all, variables and
constraints are generated and added into the model. Next, the constraint graph is
constructed and constraints are initialized.

public class CSPModel extends ifs.model.Model {
 public CSPModel(int nrVariables, int nrValues, int nrConstraints,
 int nrCompatiblePairs, long seed) {
 generate(nrVariables, nrValues, nrConstraints,
 nrCompatiblePairs, seed);
 }

 void swap(Variable[][] allPairs, int first, int second) {
 Variable[] a = allPairs[first];
 allPairs[first]=allPairs[second];
 allPairs[second]=a;
 }

 public void generate(int nrVariables, int nrValues,
 int nrConstraints, int nrCompatiblePairs, long seed) {
 Random rnd = new Random(seed);

 for (int i=0; i<nrVariables; i++) {
 CSPVariable var = new CSPVariable(nrValues);
 addVariable(var);
 }

(continues on the next page)

 - 111 -

 for (int i=0; i<nrConstraints; i++) {
 CSPBinaryConstraint c =
 new CSPBinaryConstraint(nrCompatiblePairs);
 addConstraint(c);
 }

 int numberOfAllPairs =
 variables().size()*(variables().size ()-1)/2;
 Variable[][] allPairs = new Variable[numberOfAllPairs][];

 int idx=0;
 for (Enumeration i1=variables().elements();
 i1.hasMoreElements();) {
 Variable v1 = (Variable)i1.nextElement();
 for (Enumeration i2=variables().elements();
 i2.hasMoreElements();) {
 Variable v2 = (Variable)i2.nextElement();
 if (v1.getId()>=v2.getId()) continue;
 allPairs[idx++]=new Variable[] {v1,v2};
 }
 }

 idx = 0;
 for (Enumeration i1=constraints().elements();
 i1.hasMoreElements();) {
 CSPBinaryConstraint c = (CSPBinaryConstraint) i1.nextElement();
 swap(allPairs, idx,
 idx+(int)(rnd.nextDouble()*(numberOfAllPairs-idx)));
 c.addVariable(allPairs[idx][0]);
 c.addVariable(allPairs[idx][1]);
 c.init(rnd);
 idx++;
 }
 }
}

Fig. B.4. Definition of CSP model (ifs.example.csp.CSPModel)

That’s all. The following Figure B.5. presents a code which will execute
the IFS RW(2%) solver on the CSP(25,12,198/300,36/144) problem. The best
solution found within 60 seconds is then printed.

public static void main(String[] args) {
 int nrVariables = 25;
 int nrValues = 12;
 int nrConstraints = 198;
 double tigtness = 0.25;

 int nrAllPairs = nrValues*nrValues;
 int nrCompatiblePairs = (int)((1.0-tigtness)*nrAllPair s);
 long seed = System.currentTimeMillis();

(continues on the next page)

 - 112 -

 //configuration
 ifs.util.DataProperties cfg = new ifs.util.DataProperties();
 cfg.setProperty("Termination.Class",
 "ifs.termination.GeneralTermin ationCondition");
 cfg.setProperty("Termination.StopWhenComplete","t rue");
 cfg.setProperty("Termination.TimeOut","60");
 cfg.setProperty("Comparator.Class",
 "ifs.solution.GeneralSolu tionComparator");
 cfg.setProperty("Value.Class",
 "ifs.heuristics.General ValueSelection");
 cfg.setProperty("Value.WeightConflicts", "1");
 cfg.setProperty("Value.RandomWalkProb", "0.02");
 cfg.setProperty("Variable.Class",
 "ifs.heuristics.GeneralVar iableSelection");

 //solver and model intialization
 CSPModel model =
 new CSPModel(nrVariables,nrValues,nrConstraints,
 nrCompatiblePairs,seed);
 ifs.solver.Solver solver = new ifs.solver.Solver(cfg);
 solver.setInitalSolution(model);

 //solver execution
 solver.start();
 try {
 solver.getSolverThread().join();
 } catch (InterruptedException e) {}

 //take the best ever found solution
 ifs.solution.Solution solution = solver.lastSolut ion();
 solution.restoreBest();

 //print some results
 System.out.println("Best solution found after "+
 solution.getBestTime()+" seconds ("+
 solution.getBestIteration()+" iterations).");
 System.out.println("Number of assigned variables is "+
 solution.getModel().assignedVariables().size());
 System.out.println("Total value of the solution i s "+
 solution.getModel().getTotalValue());
 int idx=1;
 for (Enumeration e=solution.getModel().variables().ele ments();
 e.hasMoreElements();) {
 CSPVariable v=(CSPVariable)e.nextElement();
 if (v.getAssignment()!= null)
 System.out.println(
 "Var"+(idx++)+"="+v.getAssignment(). toInt());
 }
}

Fig. B.5. Example of solver execution (ifs.example.csp.SimpleTest)

 - 113 -

Appendix C Simple Timetabling Problem

In [Mul01, MB01, MB02], we proposed a simplified model for timetabling
problems consisting of a set of resources, a set of activities, and a set of
dependencies between the activities (see http://kti.mff.cuni.cz/~muller/ttbench/).
Time is divided into time slots with the same duration. Every slot may have
assigned a constraint, either hard or soft: a hard constraint indicates that the slot is
forbidden for any activity, a soft constraint indicates that the slot is discouraged.
We call these constraints “time preferences”. Every activity and every resource
may have assigned a set of time preferences, which indicate forbidden and
discouraged time slots.

Activity (which can be, for instance, directly mapped to a lecture) is
identified by its name. Every activity is described by its duration (expressed as a
number of time slots), by time preferences, and by a set of resources. This set of
resources determines which resources are required by the activity. To model
alternative as well as required resources, we divide the set of resources into
several subsets – resource groups. Each group is either conjunctive or disjunctive:
the conjunctive group of resources means that the activity needs all the resources
from the group, the disjunctive group means that the activity needs exactly one of
the resources (we can choose from several alternatives). An example can be a
lecture, which will take place in one of the possible classrooms and it will be
taught for all of the selected classes. Note that we do not need to model
conjunctive groups explicitly because we can use a set of disjunctive groups
containing exactly one resource instead (the set of required resources can be
described in a conjunctive normal form). However, usage of both conjunctive and
disjunctive groups simplifies modelling for the users.

Resource is also identified by its name and it is fully described by time
preferences. There is a hard condition that only one activity can use the resource
at the same time. For instance, such resource can represent a teacher, a class, a
classroom, or another special resource at the lecture timetabling problem.

Finally, we need a mechanism for defining and handling direct
dependencies between the activities. It seems sufficient to use binary
dependencies only that define relationship between two activities. In [MB01], we
defined three temporal constraints: the activity finishes before another activity, the
activity finishes exactly at the time when the second activity starts, and two
activities run concurrently (they have the same start time).

The solution of the problem defined by the above model is a timetable
where every scheduled activity has assigned its start time and a set of reserved
resources that are needed for its execution (the activity is allocated to respective
slots of the reserved resources). This timetable must satisfy all the hard
constraints, namely:

 - 114 -

• every scheduled activity has all the required resources reserved, i.e., all
resources from the conjunctive groups and one resource from each
disjunctive group of resources,

• two scheduled activities do not use the same resource at the same time,
• no activity is scheduled into a time slot where the activity or some of

its reserved resources has a hard constraint in the time preferences,
• all dependencies between the scheduled activities are satisfied.

Furthermore, we want to minimize the number of violated soft constraints
in the time preferences of resources and activities, i.e., the total number of used
slots that are discouraged over all resources and activities.

In this section we present some results for the Simple Timetabling

Problem, achieved using randomly generated problems with the size of 20 classes,
rooms, and teachers and 10 slots per day (5 days). These problems have the
following properties:

• Randomly selected 5% of all slots for each resource (class, room,
teacher) and activity (lecture) are prohibited.

• 30% of all slots for each resource and activity are marked as
discouraged.

• Moreover, there are 50 binary precedence hard constraints between
lectures.

• The average length of an activity is about 2.5 time slots.
• Every activity has associated a class and a teacher and a randomly

selected set of available rooms (with the size from 1 to 10).
• There exists a complete feasible timetable.

The objective here is to find a complete feasible timetable which meets all
the hard constraints and which minimizes the number of discouraged time slots.
See [Mul01] for more details about the problem generator.

The problem is modelled in such a way that every lecture is represented by
a variable, a resource as a constraint and every possible location of an activity in
the time and space is represented by a single value. It means that a value stands
for a selection of the time (starting time slot), and one of the available rooms.
Binary dependencies are of course represented as constraints as well. As for the
solver, exactly the same procedures are used as in weighted CSP, but now the
weight of a value represents the number of discouraged time slots it uses.

Figures C.1 and C.2 present the number of assigned lectures (in the
percentage of all lectures) and solution quality (number of occupied discouraged
time slots) wrt. the fill factor (average usage of classes, rooms and teachers). The
average values of the best achieved solutions from 10 runs on different problem
instances within the 5 minute time limit are presented.

Both IFS MAC and IFS MAC+ were not able to find a complete solution
even for 50% filling of the timetable within the given 5 minute time limit. IFS
MAC was able to assign in average about 64% of all variables and IFS MAC+
about 80% of variables.

 - 115 -

88%

90%

92%

94%

96%

98%

100%

60% 65% 70% 75% 80% 85% 90% 95%
fillFactor[%]

N
um

be
r

of
 a

ss
ig

ne
d

le
ct

ur
es

 [%
]

IFS CBS IFS RW(1%)
IFS RW(2%) IFS RW(3%)
IFS RW(5%) IFS TS(20)
IFS TS(50) IFS TS(100)
IFS TS(200)

Fig. C.1. Number of assigned lectures.

0

50

100

150

200

250

300

350

400

450

500

50% 55% 60% 65% 70% 75% 80% 85% 90% 95%
fillFactor[%]

S
ol

ut
io

n
qu

al
ity

IFS CBS IFS RW(1%)
IFS RW(2%) IFS RW(3%)
IFS RW(5%) IFS TS(20)
IFS TS(50) IFS TS(100)
IFS TS(200)

Fig. C.2. Solution quality (the total number of used discouraged time
slots, lower number of these slots means better solution).

IFS CBS was able to give us a complete solution up to 73% filling of the
timetable in every run. Moreover, it was able to find much better solutions in the
number of used discouraged time slots than all other tested algorithms.

 - 116 -

C.1 Timetabling Problem at Charles University

For solving a real-life timetable problem at the Faculty of Mathematics
and Physics at Charles University, Prague we extended the above discussed
simple timetabling problem.

Model
First, let us look at the traditional classroom capacity constraint. We are

scheduling lectures and we know in advance how many students will attend the
lectures (with the exception of alternative lectures, see below). Thus, the capacity
restriction is naturally modelled by assigning only the classrooms with enough
capacity to the lecture. Note that there are groups of alternative resources attached
to each lecture, so the group describing the classrooms contains only the
classrooms with enough capacity.

Second, we should be able to model alternative activities per resources
(not only alternative resources per activity). In particular, we have several
alternative lectures and several classes (groups of students) that should attend the
lecture independently of which particular one. These alternative lectures can be
taught simultaneously by different teachers in different classrooms or one teacher
has these lectures at different times etc. We want to maximise the number of
available alternatives for the students under the hard constraint that at least one
alternative must be available for each class.

To describe alternative activities, we introduced a new entity into our
model, a group of alternative activities. This group is assigned to some resources
with the following constraints:

• each resource to which the group of alternative activities is assigned
must have at least one free slot to which some activity from the group
of alternative activities can be allocated (a hard constraint),

• the number of available alternative activities for all resources that have
assigned a group of alternative activities should be maximised
(modelled as a soft constraint).

Note that we are working with partial timetables as well, so the above hard
constraint is relevant only to schedules where all the activities from the group of
alternative activities are allocated (no look ahead there). Also notice that we are
encoding the objective function using soft constraints, in particular this objective
function is encoded in location selection heuristic that minimises the number of
violations of soft constraints (see bellow).

The next group of hard constraints is derived from the organisation
structure of the faculty. The lectures are taught in three different buildings in
Prague so if there are two lectures taught in different buildings and sharing either
a teacher or a class then there must be enough time to move between the
buildings. In particular, there must be at least one time slot between the lectures or
the lectures are taught in the same building. Moreover, we prefer the lectures to be
taught in the same building where the teacher has his or her office. Finally, the

 - 117 -

number of crossovers between the buildings during the day should be minimised
both for classes and for teachers.

The last group of constraints concerns the time preferences. Some subjects
have more lectures per week. In such a case, the lectures must be scheduled to
different days. Note that such a constraint can be easily described using the direct
dependency between the lectures. Each class should not have more than ten
teaching hours per day and more than six hours without a break. Similarly, each
teacher should have neither more than eight hours per day nor more than six hours
without a break. Finally, there is a preference to daytime. For example, the early
morning hours or late evening hours are less preferred. Also Friday afternoon is
not preferred. These preferences are described as a number (from least preferred -
3 to most preferred 3) for each time slot in the week. We call this number a global
time preference. The last time constraint, which is very weak, says that the
number of breaks (free slots between the lectures per day) should be minimal both
for teachers and for students.

Let us now summarise all the additional constraints. We can divide them
into hard constraints that must be satisfied and soft constraints expressing the
preferences. The additional hard constraints are:

• two (not alternative) lectures of the same subject cannot be taught on
the same day,

• the capacity of each classroom cannot be exceeded,
• each student (that has to attend some lectures, which are alternative)

must have possibility to attend at least one of the alternative lectures,
• there is at least one hour (slot) break between every two lectures which

go one after another, and that share either the same teacher or the class
and that are taught in different buildings.

The additional soft constraints are:

• one student should not have more than ten hours per day and should
not have more than six hours without a break,

• one teacher should not have more than eight hours per day and should
not have more than six hours without a break,

• the number of crossovers during a day for teachers and classes should
be minimal,

• a lecture should be taught in the same building where the teacher has
his or her workplace

• maximise the number of alternatives which students can attend,
• maximise the sum of used time slots multiplied by the global time

preference of each slot,
• minimise the number of free slots between the first and the last lecture

of the day for all teachers and classes.

 - 118 -

Results
The above described problem was tested using real data from an Fall 2001

semester at the Faculty of Mathematics and Physics, Charles University (see
Figure C.3). The problem size and structure was as follows:

• 5 days per week, 15 time slots per day,
• 746 lectures, which have to be centrally scheduled (with average

duration 2.03 time slots, teaching hour = 45 minutes), in total 1512
timeslots,

• 349 classes or sub-classes (454 groups of classes),
• 479 teachers,
• 41 classrooms (but only 30 can be used),
• 3 different locations (buildings).

It takes approximately 2 to 4 minutes to solve the problem without any user
intervention. Moreover, the system provides interactive capabilities, so the user
can easily adjust the timetable, e.g. via the drag and drop technique. This way the
user can guide the system or he or she can express some preferences that can be
hardly encoded in the soft constraints. The following list shows some features of
the timetable found by the system (with no user intervention):

• all activities were scheduled (and all hard constraints were satisfied),
• there were 76 crossovers for the classes and 7 crossovers for the

teachers (crossover means change of building during a day),
• there were only 21 cases when a class had more than 10 hours a day

and one case when a class had more than 6 hours without a break,
• there was no case when a teacher had more than 8 hours a day or more

than 6 hours without a break,
• a class could attend on average 84% of alternative lectures announced

for it,
• on average 84% of lectures were scheduled to the same building where

the teacher has his office,
• 74% of lectures were scheduled between 3rd and 11th slot (from 9:00

till 16:25), on Fridays between 3rd and 6td slot (from 9:00 till 12:15);
• 87% of lectures were scheduled between 2nd – 12th slot (from 8:10 till

17:15), on Fridays between 2nd – 7th slot (from 8:10 till 13:05);
• only 3% of lectures were scheduled on or after 14th slot (from 18:10)

and on or after 10th slot (from 14:50) on Fridays

 - 119 -

Fig. C.3. The system generates compact timetables: a timetable for a
class (left), a timetable for a classroom (right)

 - 120 -

Appendix D CD-ROM Content

This thesis includes a CD-ROM with electronic form of this thesis,
implemented program, program documentation and source codes and several
examples.

Folder or file Content
\www\index.html CD-ROM content
\www\publications.html List of publications
\doc\phd-thesis05.pdf This PhD thesis in PDF format
\doc\cv.pdf Curriculum Vitae
\doc*.pdf Other publications
\src\ifs Source code of the implemented IFS program
\src\ttsolver Source code of the Purdue University Timetabling

program
\data\purdue Example input data for Purdue Univ. Timetabling
\data\purdue\solution Example solutions to Purdue Univ. Timetabling
\data\rpp Example input data for Random Placement Problem
\data\rpp-mpp Example input data for RPP (minimal pert. version)
\data\tt Timetabling problem from [Mul01,MB01,MB02]

(called Simple Timetabling Problem)
\doc\api\index.html JavaDoc (source code) documentation
\lib Compiled program
\bin Example scripts
\cfg Example configurations
\extra Bonus: interactive timetabling program from my

master thessis
\tools JDK 1.5.0, Apache Ant 1.6.2

Fig. D.1. Included CD-ROM Content

Note that the result of this thesis is not a program with a fancy graphical
user interface solving a particular timetabling problem, but a Java library that is
capable of solving various CSP, CSOP, MPP and MPOP problems. Some of such
problems (the ones that are discussed in the previous chapters) are implemented
and available on the CD-ROM.

Due to some technical as well as legal issues it was not possible to put the
graphical user interface for Purdue Timetabling Problem on the CD-ROM.

For more details, see the documentation on the attached CD-ROM
(starting from \www\index.html).

